Vol. 118

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-01-18

A Novel Surface Wave Diplexer Based on Tensor Impedance Surfaces

By Mojtaba Mighani
Progress In Electromagnetics Research C, Vol. 118, 1-10, 2022
doi:10.2528/PIERC21120206

Abstract

In this paper, a new Surface Wave (SW) diplexer in frequency bands of 11.6 GHz and 19.3 GHz is presented based on the frequency variations of the refractive angle when an SW enters from a Scalar Impedance Sheet (SIS) to a Tensor Impedance Sheet (TIS). In this structure, a SIS has been placed alongside a TIS, and using three launchers, SW is excited and received on them. To achieve an SW diplexer, the structure is designed in a way that the refractive angle changes in the expected range when SW enters from SIS to TIS. Finally, the proposed structure is fabricated and measured by printed circuit technology. The measurement results at 11.6 GHz and 19.3 GHz show that this structure has 3.6 dB and 4.1 dB insertion losses and 33.5 dB and 37 dB isolations in the two bands, respectively. These measurements are in good agreement with mathematical modelling and simulations.

Citation


Mojtaba Mighani, "A Novel Surface Wave Diplexer Based on Tensor Impedance Surfaces," Progress In Electromagnetics Research C, Vol. 118, 1-10, 2022.
doi:10.2528/PIERC21120206
http://jpier.org/PIERC/pier.php?paper=21120206

References


    1. Matthaei, G. L., E. M. Jones, and L. Young, Microwave Filters, Impedance-matching Networks, and Coupling Structures, McGraw-Hill, New York, 1964.

    2. Bushore, K. R. and W. L. Teeter, "A variable-ratio microwave power divider and multiplexer," IRE Transactions on Microwave Theory and Techniques, Vol. 5, No. 4, 227-229, Oct. 1957, doi: 10.1109/TMTT.1957.1125154.
    doi:10.1109/TMTT.1957.1125154

    3. Cristal, E. G. and G. L. Matthaei, "A technique for the design of multiplexers having contiguous channels," IEEE Transactions on Microwave Theory and Techniques, Vol. 12, No. 1, 88-93, Jan. 1964, doi: 10.1109/TMTT.1964.1125756.
    doi:10.1109/TMTT.1964.1125756

    4. Ricardi, L. J., "A diplexer using hybrid junctions," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, No. 8, 364-371, Aug. 1966, doi: 10.1109/TMTT.1966.1126276.
    doi:10.1109/TMTT.1966.1126276

    5. Wang, R. and J. Xu, "Synthesis and design of microwave diplexers with a common resonator junction," International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, China, May 5-8, 2012, doi: 10.1109/ICMMT.2012.6230019.

    6. Sorkherizi, M. S., et al., "Design of integrated diplexer-power divider," IEEE MTT-S International Microwave Symposium (IMS), 1-3, San Francisco, CA, USA, May 22-27, 2016, doi: 10.1109/MWSYM.2016.7540124.

    7. Song, K., et al., "Balanced diplexer based on substrate integrated waveguide dual-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, 5279-5287, Dec. 2020, doi: 10.1109/TMTT.2020.3015968.
    doi:10.1109/TMTT.2020.3030789

    8. Xu, J. X., et al., "Switchable diplexer based on coupling control," IEEE Transactions on Cir- cuits and Systems II: Express Briefs, Vol. 68, No. 1, 166-170, Jan. 2021, doi: 10.1109/TC-SII.2020.3003913.
    doi:10.1109/TCSII.2020.3003913

    9. Sieganschin, A., T. Jaschke, and A. F. Jacob, "A compact diplexer for circularly polarized 20/30 GHz SIW-antennas," IEEE/MTT-S International Microwave Symposium (IMS), 599-602, Los Angeles, CA, USA, Aug. 4{6, 2020, doi: 10.1109/IMS30576.2020.9223900.

    10. Yang, L., et al., "Input-re ectionless low-pass lter on multilayered diplexer-based topology," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 10, 945-948, Oct. 2020, doi: 10.1109/LMWC.2020.3017252.
    doi:10.1109/LMWC.2020.3017252

    11. Xue, Y. M., et al., "Wideband diplexer with narrow channel spacing using hybrid bandpass- bandstop structures," IEEE Access, Vol. 8, 137783-137788, Jul. 27, 2020, doi: 10.1109/AC-CESS.2020.3012348.

    12. Macchiarella, G., et al., "A synthesis-based design procedure for waveguide duplexers using a stepped E-plane bifurcated junction," IEEE/MTT-S International Microwave Symposium (IMS), 452-455, Los Angeles, CA, USA, Aug. 4-6, 2020, doi: 10.1109/IMS30576.2020.9223923.

    13. Garcia, J. O., et al., "Waveguide quadruplet diplexer for multi-beam satellite applications," IEEE Access, Vol. 8, 110116-110128, Jun. 16, 2020, DOI: 10.1109/ACCESS.2020.3002818.

    14. Mighani, M. and G. Dadashzadeh, "Analytical study and experimental verification of the refraction angle as a function of frequency due to surface waves incident onto a tensor impedance sheet," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4642-4649, Jul. 2019, doi: 10.1109/TAP.2019.2905779.
    doi:10.1109/TAP.2019.2905779

    15. Mighani, M. and G. Dadashzadeh, "Analytical study and experimental verification of the surface wave loss on a tensor impedance surface," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2879-2885, Dec. 2019, doi: 10.1002/mop.31983.
    doi:10.1002/mop.31983

    16. Mighani, M. and G. Dadashzadeh, "Analytical study of surface wave multiple refraction in boundary of a scalar impedance surface with a tensor impedance surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 4, 1-12, Jan. 2020, doi: 10.1002/mmce.22139.
    doi:10.1002/mmce.22139

    17. Sievenpiper, D., et al., "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999, doi: 10.1109/22.798001.
    doi:10.1109/22.798001

    18. Podilchak, S. K., et al., "Surface-wave launchers for beam steering and application to planar leaky-wave antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 355-363, Feb. 2009, doi: 10.1109/TAP.2008.2011248.
    doi:10.1109/TAP.2008.2011248

    19. Podilchak, S. K., et al., "Planar surface-wave sources and metallic grating lenses for controlled guided-wave propagation," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 371-374, Jan. 2009, doi: 10.1109/LAWP.2009.2013488.
    doi:10.1109/LAWP.2009.2013488

    20. Mesa, F., C. di Nallo, and D. R. Jackson, "The theory of surface-wave and space-wave leaky-mode excitation on microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 2, 207-215, Feb. 1999, doi: 10.1109/22.744296.
    doi:10.1109/22.744296

    21. Podilchak, S. K., et al., "Planar leaky-wave antenna designs offering conical-sector beam scanning and broadside radiation using surface-wave launchers," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 155-158, Feb. 2008, doi: 10.1109/LAWP.2008.919326.
    doi:10.1109/LAWP.2008.919326

    22. Bosiljevac, M., et al., "Non-uniform metasurface Luneburg lens antenna design," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4065-4073, Sep. 2012, doi: 10.1109/TAP.2012.2207047.
    doi:10.1109/TAP.2012.2207047

    23. Mahmoud, S. F., et al., "Theoretical considerations in the optimization of surface waves on a planar structure," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2057-2063, Aug. 2004, doi: 10.1109/TAP.2004.832498.
    doi:10.1109/TAP.2004.832498

    24. Hammad, H. F., et al., "Uni-planar CPW-fed slot launchers for efficient TM0 surface-wave excitation," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1234-1240, Apr. 2003, doi: 10.1109/TMTT.2003.809668.
    doi:10.1109/TMTT.2003.809668