This research article proposes a Defected Star-Shaped Microstrip Antenna (DSSMSA) for wideband applications. A designed monopole antenna has a defected star-shaped tuning stub with a defected ground structure energised with a microstrip feed line. An appropriate tuning of resonating modes wideband frequency effect has been achieved by optimising the dimensions of the tuning stub and the dimensions of the defected ground and its notch. Surface current distribution plays a vital role in optimising the antenna geometry and developing mathematical resonating frequencies equations. The simulated and experimental results show that the DSSMSA radiates under the frequency band from 1.6638 GHz to 6.652 GHz with measured fractional bandwidth of 119.9692% for |S11| < -10 dB. Optimised DSSMSA resonates at frequencies 2.05 GHz, 3.382 GHz, and 5.494 GHz. As the geometry of DSSMSA is symmetrical, the symmetric far-field pattern has been found in the far-field.
2. Ammann, M. J. and Z. N. Chen, "A wideband shorted planar monopole with bevel," IEEE Transactions on Antennas and Propagation, Vol. 51, 901-903, 2004.
doi:10.1109/TAP.2003.811061
3. Liang, X. L., S. S. Zhong, and W. Wang, "UWB printed circular monopole antenna," Microw. Opt. Tech. Lett., Vol. 48, 1532-1534, 2006.
doi:10.1002/mop.21687
4. Zhang, Y., Z. N. Chen, and M. Y. W. Chia, "Effects of finite ground plane and dielectric substrate on planar dipoles for UWB applications," Proc. IEEE Int. Symp. Antennas Propagation, 2512-2515, 2004.
doi:10.1109/APS.2004.1331884
5. Shukla, B. K., N. kashyap, and R. K. Baghel, "A novel design of Scarecrow-shaped patch antenna for broadband applications," International Journal of Microwave and Wireless Technologies, page 1 of 9, Cambridge University Press and the European Microwave Association, 2017.
6. Ellis, M. S., Z. Zhao, J. Wu, Z. Nie, and Q. H. Liu, "Small planar monopole ultra wideband antenna with reduced ground plane effect," IET Microw. Antennas Propag., Vol. 9, 1028-1034, 2015.
doi:10.1049/iet-map.2014.0538
7. Ghaderi, M. R. and F. Mohajeri, "A compact hexagonal wide slot antenna with microstrip fed monopole for UWB application," IEEE Antennas Wireless Propag. Lett., Vol. 10, 682-685, 2011.
doi:10.1109/LAWP.2011.2158629
8. Wong, K. L., C. H.Wu, and S. W. Su, "Ultrawideband square planar metal-plate monopole antenna with a trident-shaped feeding strip," IEEE Transactions on Antennas and Propagation, Vol. 53, 1262-1269, 2005.
doi:10.1109/TAP.2005.844430
9. Paulsen, L., J. B. West, W. T. Perger, and J. Kraus, "Recent investigation of the volcano smoke antenna," Proc. IEEE Antennas Propag. Symp., Vol. 3, 845-848, 2003.
10. Anob, P. V., K. P. Ray, and G. Kumar, "Wideband orthogonal square monopole antennas with semi-circular base," Proc. IEEE Antennas Propag. Symp., Vol. 3, 294-297, 2001.
11. Wong, K. L., C. C. Huang, and W. S. Chen, "Printed ring slot antenna for circular polarisation," IEEE Transactions on Antennas and Propagation, Vol. 50, 75-77, 2002.
doi:10.1109/8.992564
12. Ansari, J. A., A. Singh, and M. Aneesh, "Desktop shaped broadband microstrip patch antennas for wireless communications," Progress In Electromagnetics Research Letters, Vol. 50, 13-18, 2014.
doi:10.2528/PIERL14092903
13. Jan, J. Y. and J. W. Su, "Bandwidth enhancement of a printed wide-slot antenna with a rotated slot," IEEE Transactions on Antennas and Propagation, Vol. 53, 2111-2114, 2005.
doi:10.1109/TAP.2005.848518
14. Sze, J. Y. and K. L. Wong, "Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 49, 1020-1024, 2001.
doi:10.1109/8.933480
15. Jan, J. Y. and L. C. Wang, "Printed wideband rhombus slot antenna with a pair of parasitic strips for multiband applications," IEEE Transactions on Antennas and Propagation, Vol. 57, 1267-1270, 2009.
doi:10.1109/TAP.2009.2015859