Vol. 116

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-11-20

A Novel Dual-Band Printed SIW Antenna Design Based on Fishnet & Ccrr DGS Using Machine Learning for Ku-Band Applications

By Mohammed Farouk Nakmouche, Muhammad Idrees Magray, Abdemegeed Mahmoud Allam, Diaa E. Fawzy, Ding-Bing Lin, and Jenn-Hwen Tarng
Progress In Electromagnetics Research C, Vol. 116, 207-219, 2021
doi:10.2528/PIERC21092703

Abstract

This paper analyzes and solves the complexity to determine the optimum positions of the Fishnet & Complementary Circular Ring Resonator (CCRR) based Defected Ground Structures (DGS) for Substrate Integrated Waveguide (SIW) based antennas. A new state-of-art technique based on Artificial Neural Network (ANN)-Machine Learning (ML) is proposed for overcoming the lack of solid and standard formulations for the computation of this parameter related to a targeted frequency. As a proof of concept and to test the performance of our approach, the algorithm is applied for the determination of the CCRR and Fishnet-DGS's optimal positions for a SIW based antenna. The SIW technique provides the advantages of low cost, small size and convenient integration with planar circuits. The ANN-ML based technique is optimized to attain dual-band resonances with optimal gain and radiation efficiency. The simulation results of the first Fishnet-DGS based antenna show good minimum return losses at two center frequencies, namely, 16.6 GHz (with gain of 6 dB and radiation efficiency of 95%) and 17.7 GHz (with gain and radiation efficiency of 9 dB and 96%, respectively). The second CCRR-DGS based antenna shows about 8\,dB gain and a radiation efficiency of 87% at 17.3 GHz, and gain and efficiency of about 8.5 dB and 85% are observed at 17.8 GHz. The proposed CCRR and Fishnet-DGS based antenna are low profiles, low costs, with good gains and radiation efficiencies, making both designs very suitable for Ku-band applications. There is a fair agreement between the measured and simulated results. The achieved dual-band resonances act as a proof of concept that the proposed ANN-ML techniques can be employed for the determination of the optimal positions for CCRR and Fishnet thereby attaining any target dual-bands in the Ku-band with good accuracy of about 98% and a save of 99% in the overall the computational time.

Citation


Mohammed Farouk Nakmouche, Muhammad Idrees Magray, Abdemegeed Mahmoud Allam, Diaa E. Fawzy, Ding-Bing Lin, and Jenn-Hwen Tarng, "A Novel Dual-Band Printed SIW Antenna Design Based on Fishnet & Ccrr DGS Using Machine Learning for Ku-Band Applications," Progress In Electromagnetics Research C, Vol. 116, 207-219, 2021.
doi:10.2528/PIERC21092703
http://jpier.org/PIERC/pier.php?paper=21092703

References


    1. Madhav, B. T. P., M. Manjeera, M. S. Navya, D. S. Devi, and V. Sumanth, "Novel metamaterial loaded multiband patch antenna," Indian J. Sci. Technol., Vol. 9, No. 38, 2016.

    2. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," Int. J. Antennas Propag., Vol. 2017, 2017.

    3. Ahsan, M. R., M. T. Islam, M. H. Ullah, R. W. Aldhaheri, and M. M. Sheikh, "A new design approach for dual-band patch antenna serving Ku/K band satellite communications," Int. J. Satell. Commun. Network, Vol. 34, 759-769, 2016.
    doi:10.1002/sat.1130

    4. Ullah, M. H., M. T. Islam, M. R. Ahsan, J. S. Mandeep, and N. Misran, "A dual band slotted patch antenna on dielectric material substrate," Int. J. Antennas Propag., Vol. 2014, 2014.

    5. Saini, G. S. and R. Kumar, "A low profile patch antenna for Ku-band applications," Int. J. Electron. Lett., Vol. 00, No. 00, 1-11, 2019.

    6. Ahsan, M. R., M. T. Islam, and M. H. Ullah, "A simple design of planar microstrip antenna on composite material substrate for Ku/K band satellite applications," Int. J. Commun. Syst., Vol. 30, e2970, 2017.
    doi:10.1002/dac.2970

    7. Da Silva, I. B. T., H. D. de Andrade, J. L. da Silva, H. C. C. Fernandes, and J. P. P. Pereira, "Design of microstrip patch antenna with complementary split ring resonator device for wideband systems application," Microw. Opt. Technol. Lett., Vol. 57, 1326-1330, 2015.
    doi:10.1002/mop.29081

    8. Nakmouche, M. F., D. E. Fawzy, A. M. M. A. Allam, H. Taher, and M. F. A. Sree, "Dual band SIW patch antenna based on H-slotted DGS for Ku band application," 2020 7th Int. Conf. Electr. Electron. Eng. ICEEE 2020, 194-197, 2020.

    9. Roy, S. and U. Chakraborty, "Metamaterial-embedded dual wideband microstrip antenna for 2.4 GHz WLAN and 8.2 GHz ITU band applications," Waves in Random and Complex Media, Vol. 30, No. 2, 193-207, 2020.
    doi:10.1080/17455030.2018.1494396

    10. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microw. Opt. Technol. Lett., Vol. 58, 3008-3012, 2016.
    doi:10.1002/mop.30200

    11. Rajak, N., N. Chattoraj, and R. Mark, "Metamaterial cell inspired high gain multiband antenna for wireless applications," AEU --- Int. J. Electron. Commun., Vol. 109, 23-30, 2019.
    doi:10.1016/j.aeue.2019.07.003

    12. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
    doi:10.2528/PIERC18012905

    13. Kumar, P., T. Ali, and M. M. M. Pai, "Electromagnetic metamaterials: A new paradigm of antenna design," IEEE Access, Vol. 9, 2021.

    14. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
    doi:10.1063/1.1343489

    15. Liu, Y., X. Yang, Y. Jia, and Y. J. Guo, "A low correlation and mutual coupling MIMO antenna," IEEE Access, Vol. 7, 127384-127392, 2019.
    doi:10.1109/ACCESS.2019.2939270

    16. Ozdemir, E., O. Akgol, F. O. Alkurt, M. Karaaslan, Y. I. Abdulkarim, and L. Deng, "Mutual coupling reduction of cross-dipole antenna for base stations by using a neural network approach," Appl. Sci., Vol. 10, No. 1, 2020.
    doi:10.3390/app10010378

    17. Nakmouche, M. F., A. M. Allam, D. E. Fawzy, and D.-B. Lin, "Development of a high gain fss re ector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.
    doi:10.2528/PIERM21083103

    18. Khan, T. and C. Roy, "Prediction of slot-position and slot-size of a microstrip antenna using support vector regression," Int. J. RF Microw Comput. Aided Eng., 2019.

    19. Kumar, R., P. Kumar, S. Singh, and R. Vijay, "Fast and accurate synthesis of frequency reconfigurable slot antenna using back propagation network," AEU --- Int. J. Electron. Commun., Vol. 112, 152962, 2019.
    doi:10.1016/j.aeue.2019.152962

    20. Sabanci, K., A. Kayabasi, A. Toktas, and E. Yigit, "Notch antenna analysis: Artificial neural network-based operating frequency estimator," Appl. Comput. Electromagn. Soc. J., Vol. 32, No. 4, 303-309, 2017.

    21. Aoad, A., "Design and manufacture of a multiband rectangular spiral-shaped microstrip antenna using EM-driven and machine learning," Elektron. ir Elektrotechnika, Vol. 27, No. 1, 29-40, 2021.
    doi:10.5755/j02.eie.27583

    22. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, D. B. Lin, M. Fathy, and A. Sree, "Development of H-slotted DGS based dual band antenna using ANN for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021.

    23. Nakmouche, M. F., A. M. M. A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ANN for K/Ku band applications," 2021 8th Int. Conf. Electr. Electron. Eng. ICEEE, 2021.

    24. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas Propag., Vol. 5, No. 8, 909-920, 2011.
    doi:10.1049/iet-map.2010.0463

    25. Nakmouche, M. F., H. Taher, D. E. Fawzy, and G. Kahraman, "Parametric study of different shapes-slotted substrate integrated waveguide for wideband applications," Mediterr. Microw. Symp., 251-254, 2019.

    26. Nakmouche, M. F., H. Taher, D. E. Fawzy, and A. M. M. A. Allam, "Development of a wideband substrate integrated waveguide bandpass filter using H-slotted DGS," Proceedings --- CAMA 2019: IEEE International Conference on Antenna Measurements and Applications, 2019.

    27. Feng, S., L. Zhang, H. W. Yu, Y. X. Zhang, and Y. C. Jiao, "A single-layer wideband differential-fed microstrip patch antenna with complementary split-ring resonators loaded," IEEE Access, Vol. 7, 132041-132048, 2019.
    doi:10.1109/ACCESS.2019.2940279

    28. Tao, L., et al., "Bandwidth enhancement of microstrip patch antenna using complementary rhombus resonator," Wirel. Commun. Mob. Comput., Vol. 2018, 2018.

    29. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microwaves, Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
    doi:10.1049/iet-map.2017.0467

    30. Patel, R., A. Desai, T. Upadhyaya, T. K. Nguyen, H. Kaushal, and V. Dhasarathan, "Meandered low profile multiband antenna for wireless communication applications," Wirel. Networks, Vol. 27, No. 1, 1-12, 2021.
    doi:10.1007/s11276-020-02437-6

    31. Gopi, D., A. R. Vadaboyina, and J. R. K. K. Dabbakuti, "DGS based monopole circular-shaped patch antenna for UWB applications," SN Appl. Sci., Vol. 3, No. 2, 2021.
    doi:10.1007/s42452-020-04123-w

    32. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, No. 12, 1783-1786, 2016.
    doi:10.1109/LAWP.2016.2536678

    33. Xu, Z., Q. Zhang, and L. Guo, "A compact 5G decoupling MIMO antenna based on split-ring resonators," Int. J. Antennas Propag., Vol. 2019, 2019.

    34. Nakmouche, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IoT terminals design," Proceedings --- 2019 6th International Conference on Image and Signal Processing and their Applications, ISPA 2019, 2019.

    35. Kumar, A., R. Patel, and M. V. Kartikeyan, "Investigation on microstrip filters with CSRR defected ground structure," Adv. Electromagn., Vol. 5, No. 2, 28-33, 2016.
    doi:10.7716/aem.v5i2.353

    36. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., 2005.

    37. Lokeshwar, B., D. Venkatasekhar, and A. Sudhakar, "Dual-band low profile siw cavity-backed antenna by using bilateral slots," Progress In Electromagnetics Research C, Vol. 100, 263-273, 2020.
    doi:10.2528/PIERC20021201

    38. Lokeshwar, B., D. Venkatasekhar, and J. Ravindranadh, "Development of a low-profile broadband cavity backed bow-tie shaped slot antenna in SIW technology," Progress In Electromagnetics Research Letter, Vol. 100, 9-17, 2021.
    doi:10.2528/PIERL21072404