Vol. 116

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-10-10

Eight Shape Electromagnetic Band Gap Structure for Bandwidth Improvement of Wearable Antenna

By Vidya R. Keshwani, Pramod P. Bhavarthe, and Surendra Singh Rathod
Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021
doi:10.2528/PIERC21070603

Abstract

In this paper, a rectangular eight shaped Electromagnetic Band Gap (EBG) structure at 5.8 GHz Industrial, Scientific and Medical (ISM) band for wearable application is proposed with intent to improve impedance bandwidth of antenna. The unit cell of an EBG structure is formed using eight shape on outer ring with inner square patches. The simulation of the eight shape EBG unit cell is carried out using eigen mode solution of Ansys High Frequency Structure Simulator (HFSS). Simulated results are validated by experimental results. The application of proposed EBG for an inverse E-shape monopole antenna at 5.8 GHz is also demonstrated. Band stop property of EBG structure reduces surface waves, and therefore, the back lobe of a wearable antenna is reduced. The frequency detuning of antenna takes place due to high losses in human body. Suitably designed EBG structure reduces this undesirable effect and also improves front to back ratio. The proposed compact antenna with designed EBG has observed the impedance bandwidth of 5.60 GHz to 6.15 GHz which covers 5.8 GHz ISM band. Evaluation of antenna performance under bending condition and on-body condition is carried out. Effectiveness of EBG array structure for Specific Absorption Rate (SAR) reduction on three layer body model is demonstrated by simulations. Calculated values of SAR for tissue in 1 g and 10 g are both less than the limitations. In conclusion, it is appropriate to use the proposed antenna in wearable applications.

Citation


Vidya R. Keshwani, Pramod P. Bhavarthe, and Surendra Singh Rathod, "Eight Shape Electromagnetic Band Gap Structure for Bandwidth Improvement of Wearable Antenna," Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021.
doi:10.2528/PIERC21070603
http://jpier.org/PIERC/pier.php?paper=21070603

References


    1. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 926-935, Apr. 2009.
    doi:10.1109/TAP.2009.2014527

    2. Haga, N., K. Saito, M. Takahashi, and K. Ito, "Characteristics of cavity slot antenna for body-area networks," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 837-843, 2009.
    doi:10.1109/TAP.2009.2014577

    3. Velan, S., et al., "Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 249-252, 2015.
    doi:10.1109/LAWP.2014.2360710

    4. Ashyap, Y. I., et al., "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas and Propagation Magazine, Vol. 16, No. 1, 2550-2553, 2017.

    5. Guido, K. and A. Kiourti, "Wireless wearables and implants: A dosimetry review," Bioelectromagnetics, Vol. 41, 3-20, 2020.
    doi:10.1002/bem.22240

    6. Pinapati, S. P., J. Brittain, A. Caldow, and C. Fumeaux, "Wearable textile EBG-inspired bandwidth-enhanced patch antenna," IET Microwaves, Antennas and Propagation, Vol. 14, No. 15, 2011-2019, 2020.
    doi:10.1049/iet-map.2019.1025

    7. Meng, F., L. Ying, and S. K. Sharma, "A miniaturized patch antenna with enhanced bandwidth by using reactive impedance surface ground and coplanar parasitic patches," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, e22225, 2020, https://doi.org/10.1002/mmce.22225.

    8. Cos, M. E., Y. Alvarez, and F. Las-Heras, "Enhancing patch antenna bandwidth by means of uniplanar EBG-AMC," Microw. Opt. Technol. Lett., Vol. 53, 1372-1377, 2011.
    doi:10.1002/mop.25974

    9. Ashyap, A. Y. I., et al., "An overview of electromagnetic band-gap integrated wearable antennas," IEEE Access, Vol. 8, 7641-7658, Jan. 2020, doi: 10.1109/ACCESS.2020.2963997.
    doi:10.1109/ACCESS.2020.2963997

    10. Pinapati, S. P., S. J. Chen, D. Ranasinghe, and C. Fumeaux, "Detuning effects of wearable patch antennas," 2017 IEEE Asia Pacific Microwave Conference (APMC), 162-165, 2017, doi: 10.1109/APMC.2017.8251403.
    doi:10.1109/APMC.2017.8251403

    11. Alemaryeen, A. and S. Noghanian, "On-body low-profile textile antenna with artificial magnetic conductor," IEEE Trans. Antennas. Propag., Vol. 67, No. 6, 3649-3656, Jun. 2019, doi: 10.1109/TAP.2019.2902632.
    doi:10.1109/TAP.2019.2902632

    12. Sugumaran, B., R. Balasubramanian, and S. K. Palaniswamy, "Reduced specific absorption rate compact flexible monopole antenna system for smart wearable wireless communications," Journal of Engineering Science and Technology, Vol. 24, No. 3, 682-693, Jun. 2021.

    13. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low profile dual band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas. Propag., Vol. 61, No. 12, 6487-6490, Dec. 2014.
    doi:10.1109/TAP.2014.2359194

    14. Gao, G.-P., B. Hu, S.-F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 3, 434-437, Mar. 2018.
    doi:10.1109/LAWP.2018.2794061

    15. Gao, G., R. Zhang, C. Yang, H. Meng, W. Geng, and B. Hu, "Microstrip monopole antenna with a novel UC-EBG for 2.4 GHz WBAN applications," IET Microwaves, Antennas and Propagation, Vol. 13, No. 13, 2319-2323, Oct. 2019.
    doi:10.1049/iet-map.2019.0271

    16. Gao, G., S.Wang, R. Zhang, C. Yang, and B. Hu, "Flexible EBG-backed PIFA based on conductive textile and PDMS for wearable applications," Microw. Opt. Technol. Lett., Vol. 62, No. 4, 1733-1741, 2020.
    doi:10.1002/mop.32224

    17. Kamardin, K., et al., "Planar textile antennas with artificial magnetic conductor for body-centric communications," Appl. Phys. A Mater. Sci. Process., Vol. 4, No. 4, 1-9, 2016.

    18. Jiang, Z., D. E. Brocker, P. E. Sieber, and D. H. Werner, "A compact, low-profile metasurface-enabled antenna for wearable medical body area network devices," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4021-4030, Aug. 2013.
    doi:10.1109/TAP.2014.2327650

    19. Abbasi, M. A. B., S. S. Nikolaou, M. A. Antoniades, M. Nikolic Stevanovic, and P. Vryonides, "Compact EBG-backed planar monopole for BAN wearable applications," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 453-463, Feb. 2017.
    doi:10.1109/TAP.2016.2635588

    20. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 524-531, Feb. 2013.
    doi:10.1109/TAP.2012.2223449

    21. Agarwal, K., Y.-X. Guo, and B. Salam, "Wearable AMC backed nearend re antenna for on-body communications on latex substrate," IEEE Trans. Compon., Packag., Manuf. Technol., Vol. 6, No. 3, 346-358, Mar. 2016.
    doi:10.1109/TCPMT.2016.2521487

    22. Jiang, Z. H., Z. Cui, T. Yue, Y. Zhu, and D. H. Werner, "Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks," IEEE Trans. Biomed. Circuits Syst., Vol. 11, No. 4, 920-932, Aug. 2017.
    doi:10.1109/TBCAS.2017.2671841

    23. Ashyap, A. Y. I., et al., "Highly efficient wearable CPW antenna enabled by EBGFSS structure for medical body area network applications," IEEE Access, Vol. 6, 77529-77541, 2018.
    doi:10.1109/ACCESS.2018.2883379

    24. Ashyap, A. Y. I., Z. Zainal Abidin, S. H. Dahlan, H. A. Majid, and G. Saleh, "Metamaterial inspired fabric antenna for wearable applications," Int. J. RF Microw. Comput.-Aided Eng., Vol. 29, No. 3, Mar. 2019.
    doi:10.1002/mmce.21640

    25. Mustafa, A. B. and T. Rajendran, "Wearable multilayer patch antenna with electromagnetic band gap structure for public safety systems," IETE Journal of Research, 1-10, 2020, doi: 10.1080/03772063.2020.1739572.
    doi:10.1080/03772063.2020.1739572

    26. Jinpil, T., H. Youngtaek, and C. Jaehoon, "Textile antenna with EBG structure for body surface wave enhancement," Electronics Letters, Vol. 51, No. 15, 1131-1132, 2015.
    doi:10.1049/el.2015.1022

    27. Ashyap, A. Y. I., et al., "Flexible antenna with HIS based on PDMS substrate for WBAN applications," Proc. IEEE Int. RF Microw. Conf. (RFM), 69-72, Dec. 2018.

    28. Ashyap, A. Y. I., et al., "Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications," IEEE Access, Vol. 8, 56346-56358, 2020, doi: 10.1109/ACCESS.2020.2981867.
    doi:10.1109/ACCESS.2020.2981867

    29. Bjorninen, T. and F. Yang, "Low-profile head-worn antenna with a monopole-like radiation pattern," IEEE Antennas Wireless Propag. Lett., 14, 2015.

    30. Hong, Y., T. Jinpil, and C. Jaehoon, "An all textile SIW cavity-backed circular ring slot antenna for WBAN applications," IEEE Antennas Wireless Propag. Lett., 15, 2016.

    31. Kang, D.-G., T. Jinpil, and C. Jaehoon, "Low-profile dipole antenna with parasitic elements for WBAN applications," Microw. Opt. Technol. Lett., Vol. 58, 1093-1097, 2015.

    32. Gao, G., B. Hu, S. Wang, and C. Yang, "Wearable planar inverted-F antenna with stable characteristic and low specific absorption rate," Microw. Opt. Technol. Lett., Vol. 60, No. 4, 876-882, Apr. 2018.
    doi:10.1002/mop.31069

    33. Sievenpiper, D., L.-J. Zhang, R. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
    doi:10.1109/22.798001

    34. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact dual band gap electromagnetic band gap structure," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 596-600, Jan. 2019.
    doi:10.1109/TAP.2018.2874702

    35. Bhavarthe, P. P., S. Rathod, and K. Reddy, "A compact two via slot type electromagnetic-bandgap structure," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 5, 446-448, May 2017.
    doi:10.1109/LMWC.2017.2690822

    36. Lamminen, A. E. I., A. R. Vimpari, and J. Saily, "UC-EBG on LTCC for 60-GHz frequency band antenna applications," IEEE Antennas Wireless Propag. Lett., Vol. 57, No. 10, 2904-2912, Oct. 2009.
    doi:10.1109/TAP.2009.2029311

    37. Remski, R., "Analysis of photonic bandgap surfaces using ansoft HFSS," Microwave Journal, Vol. 43, No. 9, 190-199, Sept. 2000.

    38. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its application for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, Jan. 2005.
    doi:10.1109/TMTT.2004.839322

    39. Ayop, O. and M. K. A Rahim, "Analysis of mushroom-like electromagnetic band gap structure using suspended transmission line technique," 2011 IEEE International RF and Microwave Conference, 258-261, 2011, doi: 10.1109/RFM.2011.6168743.
    doi:10.1109/RFM.2011.6168743

    40. Ashyap, A. Y. I., et al., "Inverted E-shaped wearable textile antenna for medical applications," IEEE Access, 6, 2018.

    41. Sakthi, B. and S. Esther, "EBG backed exible printed Yagi-Uda antenna for on-body communication," IEEE Access, 5, 2017.