Vol. 113
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-06-16
Design of Compact 4-Port MIMO Antenna Based on Minkowski Fractal Shape DGS for 5G Applications
By
Progress In Electromagnetics Research C, Vol. 113, 123-136, 2021
Abstract
A 4-port wideband Multiple-Input Multiple-Output (MIMO) antenna operating in the frequency band from 24.8 GHz to 27.6 GHz dedicated to 5G application is proposed in this manuscript. The MIMO antenna is implemented on a 23.75 × 42.5 × 0.508 mm3 Roger/Druoid 5880 substrate with relative dielectric constant εr = 2.2 and loss tangent 0.0009. Firstly, the design starts with a simulation and optimization of a single element antenna based on Minkowski fractal shape as Defected Ground Structures (DGSs) using CST Studio Suite. The single proposed element shows a 7 dBi gain and antenna efficiency of 85% at the operating frequency band. Secondly, to design a MIMO antenna with good isolation, three different configurations are used, and overall MIMO performances such as low Envelope Correlation Coefficient (ECC), high Diversity gain (DG), and low Channel Capacity Loss (CCL) are calculated and analyzed. Finally, fabrication and measurement are conducted to validate the concept for single and 2-port MIMO antenna performance.
Citation
Sara Yehia Abdel Fatah, Ehab K. I. Hamad, Wael Swelam, Abdemegeed Mahmoud Allam, and Hesham Abd Elhady Mohamed, "Design of Compact 4-Port MIMO Antenna Based on Minkowski Fractal Shape DGS for 5G Applications," Progress In Electromagnetics Research C, Vol. 113, 123-136, 2021.
doi:10.2528/PIERC21042703
References

1. Mak, K. M., H. W. Lai, K. M. Luk, and C. H. Chan, "Circularly polarized patch antenna for future 5G mobile phones," IEEE Access, Vol. 2, 1521-1529, 2014.
doi:10.1109/ACCESS.2014.2382111

2. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, No. 163 , 568-593, 2020.

3. Shayea, I., T. A. Rahman, M. H. Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in malaysia," IEEE Access, Vol. 6, No. 19 , 044-064, 2018.

4. Fatah, S. Y. A., E. K. Hamad, W. Swelam, A. Allam, M. F. A. Sree, and H. A. Mohamed, "Design and implementation of UWB slot-loaded printed antenna for microwave and millimeter wave applications," IEEE Access, Vol. 9, No. 29 , 555-564, 2021.

5. Rahman, M., M. NagshvarianJahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics, Vol. 8, No. 2, 158, 2019.
doi:10.3390/electronics8020158

6. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303

7. Ghouz, H. H. M., M. F. A. Sree, and M. A. Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, Vol. 8, 9532-9539, 2020.
doi:10.1109/ACCESS.2019.2963644

8. Ojaroudi Parchin, N., H. Jahanbakhsh Basherlou, M. Alibakhshikenari, Y. Ojaroudi Parchin, Y. I. Al-Yasir, R. A. Abd-Alhameed, and E. Limiti, "Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems," Electronics, Vol. 8, No. 5, 521, 2019.
doi:10.3390/electronics8050521

9. Kiem, N. K., H. N. B. Phuong, and D. N. Chien, "Design of compact 4 × 4 UWB-MIMO antenna with WLAN band rejection," International Journal of Antennas and Propagation, Vol. 2014, 2014.

10. Abdalla, M. A. and A. A. Ibrahim, "Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1452-1455, 2013.
doi:10.1109/LAWP.2013.2288338

11. Zou, X.-J., G.-M. Wang, Y.-W. Wang, and B.-F. Zong, "Mutual coupling reduction of quasi-Yagi antenna array with hybrid wideband decoupling structure," AEU — International Journal of Electronics and Communications, Vol. 129, 153553, 2021.
doi:10.1016/j.aeue.2020.153553

12. Ibrahim, A. A., M. A. Abdalla, A. B. Abdel-Rahman, and H. F. Hamed, "Compact MIMO antenna with optimized mutual coupling reduction using DGS," International Journal of Microwave and Wireless Technologies, Vol. 6, No. 2, 173, 2014.
doi:10.1017/S1759078713001013

13. Toktas, A. and A. Akdagli, "Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 8, 822-829, 2015.
doi:10.1049/iet-map.2014.0086

14. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact multiple-input-multiple-output antenna using quasi-self-complementary antenna structures for ultrawideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 13, 1021-1029, 2014.
doi:10.1049/iet-map.2013.0503

15. Abdelaziz, A. and E. K. Hamad, "Isolation enhancement of 5G multiple-input multiple-output microstrip patch antenna using metamaterials and the theory of characteristic modes," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 11, e22416, 2020.
doi:10.1002/mmce.22416

16. Zou, X.-J., G.-M. Wang, Y.-W. Wang, and H.-P. Li, "An efficient decoupling network between feeding points for multielement linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3101-3108, 2019.
doi:10.1109/TAP.2019.2899039

17. Ki Hamad, E. and M. Zm Hamdalla, "Design of miniaturized and high isolation metamaterial-based MIMO antenna for mobile terminals," JES. Journal of Engineering Sciences, Vol. 45, No. 6, 763-772, 2017.
doi:10.21608/jesaun.2017.116885

18. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 152-156, 2018.
doi:10.1109/LAWP.2018.2883428

19. Ren, Z. and A. Zhao, "Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications," IEEE Access, Vol. 7, 82288-82296, 2019.
doi:10.1109/ACCESS.2019.2923666

20. Yang, Z., J. Xiao, and Q. Ye, "Enhancing MIMO antenna isolation characteristic by manipulating the propagation of surface wave," IEEE Access, Vol. 8, No. 115 , 572-581, 2020.

21. Nakmouche, M. F., A. Allam, D. E. Fawzy, D. B. Lin, M. Fathy, and A. Sree, "Development of H-slotted DGS based dual band antenna using ann for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021.

22. Nakmouche, M. F., A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ann for K/Ku band applications," International Conference on Electrical & Electronics Engineering, 2021.

23. Nakmouche, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IOT terminals design," 2019 6th International Conference on Image and Signal Processing and Their Applications (ISPA), 1-4, IEEE, 2019.

24. Nakmouche, M. F., D. E. Fawzy, A. Allam, H. Taher, and M. F. A. Sree, "Dual band SIW patch antenna based on H-slotted DGS for Ku band application," 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), 194-197, IEEE, 2020.
doi:10.1109/ICEEE49618.2020.9102564

25. Mahlaoui, Z., A. Latif, A. Hussaini, I. Elfergani, A. Ali, F. Mirza, and R. Abd-Alhameed, "Design of a Sierpinski patch antenna around 2.4 GHz/5 GHz for WiFi (ieee 802.11 n) applications," 2015 Internet Technologies and Applications (ITA), 472-474, IEEE, 2015.
doi:10.1109/ITechA.2015.7317450

26. Goyal, N., S. S. Dhillon, and A. Marwaha, "Hybrid fractal microstrip patch antenna for wireless applications," 2015 1st International Conference on Next Generation Computing Technologies (NGCT), 456-461, IEEE, 2015.
doi:10.1109/NGCT.2015.7375160

27. Mandelbrot, B. B., "Stochastic models for the earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands," Proceedings of the National Academy of Sciences, Vol. 72, No. 10, 3825-3828, 1975.
doi:10.1073/pnas.72.10.3825

28. Kaur, M. and J. S. Sivia, "Ann and FA based design of hybrid fractal antenna for ISM band applications," Progress In Electromagnetics Research C, Vol. 98, 127-140, 2020.
doi:10.2528/PIERC19110901

29. Cohen, N., "Fractal antenna and fractal resonator primer," Benoit Mandelbrot: A Life in Many Dimensions, 207-228, World Scientific, 2015.

30. Mezaal, Y. S., "New compact microstrip patch antennas: Design and simulation results," Indian Journal of Science and Technology, Vol. 9, No. 12, 1-6, 2016.
doi:10.17485/ijst/2016/v9i12/85950

31. Kubacki, R., M. Czy zewski, and D. Laskowski, "Minkowski island and crossbar fractal microstrip antennas for broadband applications," Applied Sciences, Vol. 8, No. 3, 334, 2018.
doi:10.3390/app8030334

32. Sultan, K. S. and H. H. Abdullah, "Planar UWB MIMO-diversity antenna with dual notch characteristics," Progress In Electromagnetics Research C, Vol. 93, 119-129, 2019.
doi:10.2528/PIERC19031202

33. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 162-170, 2017.
doi:10.1109/MAP.2017.2658346

34. Wang, F., Z. Duan, X. Wang, Q. Zhou, and Y. Gong, "High isolation millimeter-wave wideband MIMO antenna for 5G communication," International Journal of Antennas and Propagation, Vol. 2019, 2019.

35. Sun, Y. -X. and K. W. Leung, "Substrate-integrated two-port dual-frequency antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3692-3697, 2016.
doi:10.1109/TAP.2016.2565740

36. Zhang, Y., J.-Y. Deng, M.-J. Li, D. Sun, and L.-X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 747-751, 2019.
doi:10.1109/LAWP.2019.2901961

37. Khalid, M., S. Iffat Naqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, Y. Amin, et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071

38. Iqbal, A., A. Basir, A. Smida, N. K. Mallat, I. Elfergani, J. Rodriguez, and S. Kim, "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019.
doi:10.1109/ACCESS.2019.2933913

39. Hussain, N., M.-J. Jeong, J. Park, and N. Kim, "A broadband circularly polarized Fabry-Perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
doi:10.1109/ACCESS.2019.2908441

40. Jiang, H., L.-M. Si, W. Hu, and X. Lv, "A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications," IEEE Photonics Journal, Vol. 11, No. 1, 1-9, 2019.

41. Al Abbas, E., M. Ikram, A. T. Mobashsher, and A. Abbosh, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, No. 181 , 916-923, 2019.

42. Iffat Naqvi, S., N. Hussain, A. Iqbal, M. Rahman, M. Forsat, S. S. Mirjavadi, and Y. Amin, "Integrated LTE and millimeter-wave 5G MIMO antenna system for 4G/5G wireless terminals," Sensors, Vol. 20, No. 14, 3926, 2020.
doi:10.3390/s20143926

43. El Hadri, D., A. Zakriti, A. Zugari, M. El Ouahabi, and J. El Aouf, "High isolation and ideal correlation using spatial diversity in a compact MIMO antenna for fifth-generation applications," International Journal of Antennas and Propagation, Vol. 2020, 2020.