Vol. 112
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-26
Stubs and Slits Loaded Partial Ground Plane Inspired Novel Hexagonal Ring-Shaped Fractal Antenna for 5G/LTE/RFID/GSM/Bluetooth/WLAN/WiMAX Wireless Applications: Design and Measurement
By
Progress In Electromagnetics Research C, Vol. 112, 99-111, 2021
Abstract
A multiband hexagonal ring-shaped fractal antenna with stubs and slits loaded partial ground plane has been presented in this manuscript. The proposed antenna is compact in size 24×30×1.6 mm3 and exhibits enhanced bandwidth, gain, and reflection coefficient. Measured results exhibit that the proposed antenna resonates with impedance bandwidth (S11 ≤ -10 dB) in the frequency ranges 1.0-2.75 GHz, 4.74-8.70 GHz, 11.04-12.76 GHz, 14.97-16.62 GHz, and 19.70-22.0 GHz. These frequency ranges cover distinct wireless standards such as 1800 MHz 2G spectrum of GSM band (1.71-1.88 GHz), LTE 2300/LTE 2500 (2.3-2.4 GHz/2.5-2.69 GHz), RFID/Bluetooth (2.4 GHz), 5G spectrum band (5900-6400 MHz) adopted by European Union, Long Term Evolution (LTE) band 46 (5150-5925 GHz), RFID (5.4 GHz), WLAN (5.15-5.35 and 5.72-5.85 GHz), Wi-MAX (5.25-5.85 GHz), FSS (11.45-11.7/12.5-12.75 GHz), defence systems (14.62-15.23 GHz), aeronautical radio navigations (15.43-17.3 GHz), and fixed/mobile satellite communications (19.7-20.1 GHz and 20.2- 21.2 GHz). The proposed antenna reveals the positive value of peak realized gain with almost omnidirectional radiation patterns in E- and H-planes for all the resonant frequency bands. The performance of proposed antenna has been realized by using HFSS V13 simulator based on FEM (Finite Element Method), and the results are compared with the experimental results which are in good agreement with each other.
Citation
Narinder Sharma, and Sumeet Singh Bhatia, "Stubs and Slits Loaded Partial Ground Plane Inspired Novel Hexagonal Ring-Shaped Fractal Antenna for 5G/LTE/RFID/GSM/Bluetooth/WLAN/WiMAX Wireless Applications: Design and Measurement," Progress In Electromagnetics Research C, Vol. 112, 99-111, 2021.
doi:10.2528/PIERC21040601
References

1. Mandelbrot, B.-B., The Fractal Geometry of Nature, San Francisco, W.H. Freeman and Company, California, 1982.

2. Sharma, N. and V. Sharma, "A journey of antenna from dipole to fractal: A review," J. Eng. Technol., Vol. 6, No. 2, 317-351, 2017.

3. Sharma, N. and S.-S. Bhatia, "Double split Labyrinth resonator based CPW-fed hybrid fractal antennas for PCS/UMTS/WLAN/Wi-MAX applications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2476-2498, 2019.
doi:10.1080/09205071.2019.1685009

4. Sharma, N., V. Sharma, and S. S. Bhatia, "A novel hybrid fractal antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 73, 25-35, 2018.
doi:10.2528/PIERM18052403

5. Sharma, N. and V. Sharma, "A design of microstrip patch antenna using hybrid fractal slot for wideband applications," Ain. Shams. Eng. J., Vol. 9, No. 4, 2491-2497, 2018.
doi:10.1016/j.asej.2017.05.008

6. Kaur, M. and J.-S. Sivia, "Minkowski, Giuseppe Peano and Koch curves-based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO," AEU-Int. J. Electon. and Commun., Vol. 99, 14-24, 2019.
doi:10.1016/j.aeue.2018.11.005

7. Bangi, I.-S. and J.-S. Sivia, "Moore, Minkowski and Koch curves-based hybrid fractal antenna for multiband applications," Wireless Pers. Commun., Vol. 108, 2435-2448, 2019.
doi:10.1007/s11277-019-06531-7

8. Kumar, Y. and S. Sing, "A compact multiband hybrid fractal antenna for multi-standard mobile wireless applications," Wireless Pers. Commun., Vol. 84, 57-67, 2015.
doi:10.1007/s11277-015-2593-x

9. Shahu, B.-L., N. Chattoraj, S. Pal, and D.-K. Upadhyay, "A compact UWB bandpass filter using hybrid fractal shaped DGS," J. Microw., Optoelect. and Electromag. App., Vol. 16, No. 1, 38-49, 2017.
doi:10.1590/2179-10742017v16i1731

10. Choukiker, Y.-K., S.-K. Sharma, and S.-K. Behera, "Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices," IEEE Trans. on Ant. and Propag., Vol. 62, No. 3, 1483-1488, 2014.
doi:10.1109/TAP.2013.2295213

11. Sharma, N., S. Kaur, and B.-S. Dhaliwal, "A new triple band hybrid fractal boundary antenna," IEEE Int. Conf. Recent Trends Electron., Info. & Commun. Technol., 2016.

12. Bangi, I.-S. and J.-S. Sivia, "A compact hybrid fractal antenna using Koch and Minkowski curves," IEEE 9th Annual Info. Technol., Electron. and Mobile Commun. Conf., 2018.

13. Goyal, N., S. Singh, and A. Marwaha, "Hybrid fractal microstrip patch antenna for wireless applications," Int. Conf. Next Gen. Comput. Technol., 2015.

14. Kaur, N., J. Singh, and M. Kumar, "Hexagonal ring-shaped dual band antenna using staircase fractal geometry for wireless applications," Wireless Pers. Commun., Vol. 113, 2067-2078, 2020.
doi:10.1007/s11277-020-07307-0

15. Mark, R., N. Mishra, K. Mandal, P.-P. Sarkar, and S. Das, "Hexagonal ring fractal antenna with dumb bell-shaped defected ground structure for multiband wireless applications," AEU-Int. J. Electon. and Commun., Vol. 94, 42-50, 2018.
doi:10.1016/j.aeue.2018.06.039

16. Sharma, N. and S.-S. Bhatia, "Performance enhancement of nested hexagonal ring-shaped compact multiband integrated wideband fractal antennas for wireless applications," Int. J. RF Microw. Aided. Eng., Vol. 30, No. 3, 1-21, 2019.

17. Rathod, S.-M., P. Jadhav, R.-N. Awale, K.-P. Ray, and S.-S. Kakatkar, "Low profile hexagonal ring patch antenna for biomedical application," Int. Conf. Comput. Commun. Cont. Autom., 2017.

18. Ray, K.-P., S.-S. Kakatkar, S.-M. Rathod, R.-N. Awale, and D.-P. Rathod, "Investigation of hexagonal ring microstrip antenna," Int. Conf. on Microw., Optic and Commun. Eng., 2015.

19. Daniel, R. S. and R. Selvaraj, "A low-profile split ring monopole antenna loaded with hexagonal split ring resonator for RFID applications," Progress In Electromagnetics Research M, Vol. 92, 169-179, 2020.
doi:10.2528/PIERM20030702

20. Bhatia, S. S. and N. Sharma, "A compact wideband antenna using partial ground plane with truncated corners, L-shaped stubs and inverted T-shaped slots," Progress In Electromagnetics Research M, Vol. 97, 133-141, 2020.
doi:10.2528/PIERM20072503

21. Madhav, B. T. P. and A. Tirunagari, "Design and study of multiband planar wheel-like fractal antenna for vehicular communication applications," Microw. Optic. Technol. Lett., Vol. 60, 1985-1993, 2018.
doi:10.1002/mop.31290

22. Reha, A., A. El Amri, O. Benhmammouch, A. O. Said, A. El Ouadih, and M. Bouchouirbat, "CPW-fed H-tree fractal antenna for WLAN, WIMAX, RFID, C-band, HiperLAN, and UWB applications," Int. J. Microw. Wirel. Technol., Vol. 8, 327-334, 2016.
doi:10.1017/S175907871500001X

23. Lu, H.-X., F. Liu, S. Ming, and Y.-A. Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, No. 2, e21202, 2018.
doi:10.1002/mmce.21202

24. Bhatia, S. S., J. S. Sivia, and N. Sharma, "An optimal design of fractal antenna with modified ground structure for wideband applications," Wirel. Pers. Commun., Vol. 103, 1977-1991, 2018.
doi:10.1007/s11277-018-5891-2

25. Kakkar, S. and S. Rani, "Implementation of fractal geometry to enhance the bandwidth of CPW fed printed monopole antenna," IETE J. Res., Vol. 63, 23-30, 2017.
doi:10.1080/03772063.2016.1242382

26. Deng, C., "Wideband microstrip antennas loaded by ring resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1665-1668, 2013.
doi:10.1109/LAWP.2013.2294921

27. Singh, G. and A. P. Singh, "On the design of planar antenna using Fibonacci word fractal geometry in support of public safety," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 2, e21554, 2019.
doi:10.1002/mmce.21554

28. Joseph, S., B. Paul, S. Mridula, and P. Mohanan, "A novel planar fractal antenna with CPW-feed for multiband applications," Radioeng. J., Vol. 22, 1262-1266, 2013.

29. Vallappil, A. K., B. A. Khawaja, I. Khan, and M. Mustaqim, "Dual-band Minkowski-Sierpinski fractal antenna for next generation satellite communications and wireless body area networks," Microw. Optic. Technol. Lett., Vol. 60, 171-178, 2018.
doi:10.1002/mop.30931

30. Puri, S.-C., S. Das, and M.-G. Tiary, "A multiband antenna using plus-shaped fractal-like elements and stepped ground plane," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 5, e22169, 2020.
doi:10.1002/mmce.22169