Vol. 111

Latest Volume
All Volumes
All Issues
2021-03-17

Theory, Simulation and Millimeterwave Measurement of the Operating and Parasitic Modes in a High Loss Dielectric Loaded Gyrotron Traveling Wave Amplifier (Invited)

By Weijie Wang, Weijie Wang, Wei Jiang, Yelei Yao, Jianxun Wang, and Yong Luo
Progress In Electromagnetics Research C, Vol. 111, 35-46, 2021
doi:10.2528/PIERC21012801

Abstract

In the gyrotron traveling wave amplifier (gyro-TWA), high loss dielectric materials loaded in a cylindrical waveguide are adopted to suppress the unwanted parasitic oscillations. It is of great importance to accurately understand the relative permittivity εr and tanδ for studying the microwave and millimeter wave dispersion, and loss properties of a specific mode. The high lossy dielectric loaded circuit of the gyro-TWAs made of the BeO-SiC ceramic with certain relative permittivity and loss tangent are theoretical calculated, simulated and measured. The field distribution, dispersion and loss properties of three different dielectric loaded circular HEd12, HEd22 and TEd02 modes (corresponding to the TE11, TE21 and TE01 modes in the smooth hollow cylindrical waveguide respectively) in different frequency bands are respectively investigated. The theoretical analysis, simulation, and measurement results have a good agreement. This work has clear guiding significance for the stable work of gyro-TWAs.

Citation


Weijie Wang, Weijie Wang, Wei Jiang, Yelei Yao, Jianxun Wang, and Yong Luo, "Theory, Simulation and Millimeterwave Measurement of the Operating and Parasitic Modes in a High Loss Dielectric Loaded Gyrotron Traveling Wave Amplifier (Invited)," Progress In Electromagnetics Research C, Vol. 111, 35-46, 2021.
doi:10.2528/PIERC21012801
http://jpier.org/PIERC/pier.php?paper=21012801

References


    1. Chu, K. R., "The electron cyclotron maser," Rev. Mod. Phys., Vol. 6, No. 2, 489-540, Apr. 2004.
    doi:10.1103/RevModPhys.76.489

    2. Garven, M., J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, "A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 885-893, Apr. 2002.
    doi:10.1109/TPS.2002.801650

    3. Du, C. H., T. H. Chang, P. K. Liu, Y. C. Huang, P. X. Jiang, S. X. Xu, Z. H. Geng, B. L. Hao, L. Xiao, G. F. Liu, Z. D. Li, and S. H. Shi, "Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit," IEEE Trans. on Electron Devices, Vol. 60, No. 7, 2388-2395, Jul. 2013.
    doi:10.1109/TED.2013.2264100

    4. Song, H. H., D. B. McDermott, Y. Hirata, L. R. Barnett, C.W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann, "Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier," Plys. Plasma, Vol. 11, No. 5, 2935-2941, May 2004.
    doi:10.1063/1.1690764

    5. Yan, R., Y. Luo, G. Liu, and Y. L. Pu, "Design and experiment of a Q-band gyro-TWT loaded with lossy dielectric," IEEE Trans. on Electron Devices, Vol. 59, No. 12, 3612-3617, Dec. 2012.
    doi:10.1109/TED.2012.2219584

    6. Yan, R., et al., "Investigation on high average power operations of gyro-TWTs with dielectric-Loaded waveguide circuits," IEEE Trans. on Electron Devices, Vol. 65, No. 7, 3012-3018, Jul. 2018.
    doi:10.1109/TED.2018.2836905

    7. He, W., C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, "High power wideband gyrotron backward wave oscillator operating towards the terahertz region," Phys. Rev. Lett., Vol. 90, No. 25, 258-302, Jul. 2003.

    8. Samsonov, S. V., et al., "Ka-band gyrotron travelling wave tube with the highest continuous wave and average power," IEEE Trans. on Electron Devices, Vol. 61, No. 12, 4264-4267, Dec. 2014.
    doi:10.1109/TED.2014.2364623

    9. Samsonov, S. V., G. G. Denisov, I. G. Gachev, and A. A. Bogdashov, "CW operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube," IEEE Electron Device Letters, Vol. 41, No. 5, 773-776, May 2020.
    doi:10.1109/LED.2020.2980572

    10. Rozental, M., et al., "CW multifrequency K-band source based on a helical-waveguide gyro-TWT with delayed feedback," IEEE Trans. on Electron Devices, Vol. 68, No. 1, 330-335, Jan. 2021.
    doi:10.1109/TED.2020.3036331

    11. Kim, H. J., E. A. Nanni, M. A. Shapiro, J. R. Sirigiri, P. P. Woskov, and R. J. Temkin, "Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube," Phys. Rev. Lett., Vol. 110, 165101-1-165101-5, Apr. 2013.
    doi:10.1103/PhysRevLett.110.017201

    12. Nanni, E. A., S. M. Lewis, M. A. Shapiro, R. G. Griffin, and R. J. Temkin, "Photonic-band-gap traveling-wave gyrotron amplifier," Phys. Rev. Lett., Vol. 111, 235101-1-235101-5, Dec. 2013.

    13. Chu, K. R., et al., "Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier," IEEE Trans. Plasma Sci., Vol. 27, No. 2, 391-404, Apr. 1999.
    doi:10.1109/27.772266

    14. Yan, R., Y. Tang, and Y. Luo, "Design and experimental study of a high-gain W-Band gyro-TWT with nonuniform periodic dielectric loaded waveguide," IEEE Trans. on Electron Devices, Vol. 61, No. 7, 2564-2569, Jul. 2014.

    15. Yeh, Y. S., et al., "A study of a terahertz gyrotron traveling-wave amplifier," Plys. Plasma, Vol. 24, 103126, Oct. 2017.

    16. Yeh, Y. S., C. L. Hung, T. H. Chang, Y. W. Guo, B. H. Kao, C. H. Chen, and Z. W. Wang, "Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band," Plys. Plasma, Vol. 22, 123115, Dec. 2015.
    doi:10.1063/1.4938040

    17. Du, C. H., S. Pan, H. Q. Bian, and P. K. Liu, "Time-domain multimode analysis of a terahertz gyro-TWT amplifier," IEEE Trans. on Electron Devices, Vol. 65, No. 4, 1550-1557, Apr. 2014.
    doi:10.1109/TED.2018.2808178

    18. Wang, J. X., Y. Luo, Y. Xu, R. Yan, Y. L. Pu, X. Deng, and H. Wang, "Simulation and experiment of a Ku-band gyro-TWT," IEEE Trans. on Electron Devices, Vol. 61, No. 6, 1818-1823, Jun. 2014.
    doi:10.1109/TED.2013.2296552

    19. Tang, Y., Y. Luo, Y. Xu, R. Yan, W. Jiang, and Y. Zheng, "Design of a novel dual-band gyro-TWT," IEEE Trans. on Electron Devices, Vol. 61, No. 11, 3858-3863, Nov. 2014.
    doi:10.1109/TED.2014.2353851

    20. Rao, W., L. Wang, Y. Wang, C. Fang, G. Liu, W. Jiang, J. X. Wang, Z. W. Wu, F. Y. Zhang, and Y. Luo, "Design of a high-gain X-band megawatt gyrotron traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 47, No. 6, 2818-2822, Jun. 2019.
    doi:10.1109/TPS.2019.2915554

    21. Li, H., J. X. Wang, Y. L. Yao, and Y. Luo, "Development of high-efficiency gyro-TWT with a nonuniform dielectric-loaded circuit," IEEE Trans. on Electron Devices, Vol. 66, No. 6, 2764-2770, Jun. 2019.
    doi:10.1109/TED.2019.2912761

    22. Li, Y., R. Yan, Y. L. Yao, Q. Q. Yue, X. W. Lin, W. X. Li, G. Liu, and Y. Luo, "Analysis of phase characteristics of gyrotron traveling-wave tubes," IEEE Trans. on Electron Devices, Vol. 67, No. 5, 2170-2175, May 2020.
    doi:10.1109/TED.2020.2981165

    23. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill Book Co., New York, 1961.

    24. Marcatili, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell System Tech. J., 1783-1809, Jul. 1964.

    25. Lee, C. S., S. W. Lee, and S. L. Chuang, "Normal modes in an overmoded circular waveguide coated with lossy material," IEEE Trans. on Microwave Theory and Techniques, Vol. 34, No. 7, 773-785, Jul. 1986.

    26. Du, C. H. and P. K. Liu, Millimeter-wave Gyrotron Traveling-wave Tube Ampliers, 1st Ed., 210, Springer Berlin Heidelberg, 2014.
    doi:10.1007/978-3-642-54728-7

    27. Shcherbinin, V. I., et al., "HE and EH hybrid waves in a circular dielectric waveguide with an anisotropic impedance surface," Problems of Atomic Science and Technology. Plasma Electronics and New Methods of Acceleration, Vol. 98, 89-93, 2015.

    28. Shcherbinin, V. I., G. I. Zaginaylov, and V. I. Tkachenko, "Analogy between circular core-cladding and impedance waveguides and their membrane functions," Progress In Electromagnetics Research M, Vol. 53, 111-120, 2017.
    doi:10.2528/PIERM16110902

    29. Gholizadeh, M. and F. Hojjat Kashani, "A new analytical method for calculating the cutoff frequencies of an eccentrically dielectric-loaded circular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 5, 453-456, 2016.
    doi:10.1109/LMWC.2020.2981925

    30. Liu, G., et al., "Design and microwave measurement of a novel compact TE0n/TE1n mode converter," IEEE Trans. on Microwave Theory and Techniques, Vol. 64, No. 12, 4108-4116, 2016.
    doi:10.1109/TMTT.2016.2608770