Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-23

A Dynamic Wireless Power Transfer Using Metamaterial-Based Transmitter

By Jiropast Suakaew and Wanchai Pijitrojana
Progress In Electromagnetics Research C, Vol. 110, 151-165, 2021
doi:10.2528/PIERC21012002

Abstract

Dynamic Wireless Power Transmission has attracted attention in the research area due to its safety, convenience, and automation. However, the major limitation in achieving this vision is its working distance. In this paper, the metamaterial (MM) based transmitter WPT with zero permeability is presented and compared with an inductive WPT system. The comparative simulations and experimental investigations validate the effectiveness of the proposed design. The system efficiencies are determined at the distances of 8 cm, 11 cm, and 16 cm between the transmitter and receiver (SAE J2954) with an operating frequency of 20 kHz. The power transfer efficiency (PTE) of the WPT system using an inductive transmitter and the WPT system using an MM-based transmitter is shown as 85/87%, 65/70%, 45/65%, respectively. The PTE of the MM-based transmitter is 64% higher than an inductive transmitter at a 16 cm distance. The robot without a battery moves dynamically along the track with the MM-based transmitter underneath. The results show that the power transfer efficiency of the MM-based transmitter is considerably higher than that of the inductive transmitter.

Citation


Jiropast Suakaew and Wanchai Pijitrojana, "A Dynamic Wireless Power Transfer Using Metamaterial-Based Transmitter," Progress In Electromagnetics Research C, Vol. 110, 151-165, 2021.
doi:10.2528/PIERC21012002
http://jpier.org/PIERC/pier.php?paper=21012002

References


    1. Kim, C.-G., D.-H. Seo, J.-S. You, J.-H. Park, and B. H. Cho, "Design of a contactless battery charger for cellular phone," IEEE Trans. Ind. Electron., Vol. 48, No. 6, 1238-1247, Dec. 2001.
    doi:10.1109/41.969404

    2. Jabbar, H., Y. S. Song, and T. T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices," IEEE Trans. Consum. Electron., Vol. 56, No. 1, 247-253, Feb. 2010.
    doi:10.1109/TCE.2010.5439152

    3. Shiba, K., A. Morimasa, and H. Hirano, "Design and development of low-loss transformer for powering small implantable medical devices," IEEE Trans. Biomed. Circuits Syst., Vol. 4, No. 2, 77-85, Apr. 2010.
    doi:10.1109/TBCAS.2009.2034364

    4. Wang, C.-S., O. H. Stielau, and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Trans. Ind. Electron., Vol. 52, No. 5, 1308-1314, Oct. 2005.
    doi:10.1109/TIE.2005.855672

    5. Madawala, U. K. and D. J. Thrimawithana, "A bidirectional inductive power interface for electric vehicles in V2G systems," IEEE Trans. Ind. Electron., Vol. 58, No. 10, 4789-4796, Oct. 2011.
    doi:10.1109/TIE.2011.2114312

    6. Kiani, M. and M. Ghovanloo, "The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission," IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 59, No. 9, 2065-2074, Sep. 2012.
    doi:10.1109/TCSI.2011.2180446

    7. Hui, S. Y. R., W. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 9, 4500-4511, Sep. 2014.
    doi:10.1109/TPEL.2013.2249670

    8. Lee, K. and S. H. Chae, "Power transfer efficiency analysis of intermediate-resonator for wireless power transfer," IEEE Trans. Power Electron., Vol. 8993, 1-1, Apr. 2017.

    9. Zhong, W. X., et al., "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Trans. Power Electron., Vol. 30, No. 2, Feb. 2015.
    doi:10.1109/TPEL.2014.2312020

    10. Kim, S.-H., Y.-S. Lim, and S.-J. Lee, "Magnetic resonant coupling based wireless power transfer system with in-band communication “Gangwon-do in Korea”," Department of Electronics Engineering, Ewha Woman’s Univ. Journal of Semiconductor Technology and Science, Vol. 13, No. 6, Dec. 2013.

    11. Rittiplang, A. and W. Pijitrojana, "A low-frequency wireless power transfer using parallel resonance under impedance matching," Applied Mechanics and Material, Vol. 781, 410-413, Aug. 2015.
    doi:10.4028/www.scientific.net/AMM.781.410

    12. Rittiplang, A. and W. Pijitrojana, "Low-frequency wireless power transfer using optimal primary capacitance of parallel resonance for impedance matching," IJIREEICE, Vol. 4, No. 1, Jan. 2016.
    doi:10.17148/IJIREEICE.2016.4113

    13. Rittiplang, A., W. Pijitrojana, and K. Daroj, "Low-frequency wireless power transfers using modified parallel resonance matching at complex load," KKU Engineering Journal, 184-188, Oct./Dec. 2016.

    14. Rittiplang, A. and W. Pijitrojana, "Development of in-motion wireless power transfer test bed platform for wireless electric vehicle charger," Thammasat International Journal of Science and Technology, Vol. 22, No. 2, 2017.

    15. Wang, B., W. Yerazunis, and K. H. Teo, "Wireless power transfer: Metamaterials and array of coupled resonators," Proceedings of the IEEE, Vol. 101, No. 6, 1359-1368, Jun. 2013.
    doi:10.1109/JPROC.2013.2245611

    16. Li, L., H. Liu, H. Zhang, and W. Xue, "Efficient wireless power transfer system integrating with metasurface for biological applications," IEEE Trans. Ind. Electron., Vol. 65, No. 4, 3230-3239, Apr. 2018.
    doi:10.1109/TIE.2017.2756580

    17. Wu, Q., Y. H. Li, N. Gao, F. Yang, Y. Q. Chen, K. Fang, Y. W. Zhang, and H. Chen, "Wireless power transfer based on magnetic metamaterials consisting of assembled ultra-subwavelength meta-atoms," Europhysics Letters, EPL, Vol. 109, No. 6, 68005, Mar. 2015.
    doi:10.1209/0295-5075/109/68005

    18. Rajagopalan, A., A. K. RamRakhyani, D. Schurig, and G. Lazzi, "Improving power transfer efficiency of a short-range telemetry system using compact metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 947-955, Apr. 2014.
    doi:10.1109/TMTT.2014.2304927

    19. Das, R., A. Basir, and H. Yoo, "A metamaterial-coupled wireless power transfer system based on cubic high-dielectric resonators," IEEE Trans. Ind. Electron., Vol. 66, No. 9, 7397-7406, Sep. 2019.
    doi:10.1109/TIE.2018.2879310

    20. Wang, X., Y. Wang, Y. Hu, Y. He, and Z. Yan, "Analysis of wireless power transfer using superconducting metamaterials," IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, Mar. 2019.

    21. Lu, C., X. Huang, C. Rong, Z. Hu, J. Chen, X. Tao, S. Wang, B. Wei, and M. Liu, "Shielding the magnetic field of wireless power transfer system using zero-permeability metamaterial," IET Journals, Vol. 2019, No. 16, 1812-1815, 2019.

    22. Cho, Y., S. Lee, D.-H. Kim, H. Kim, C. Song, S. Kong, J. Park, C. Seo, and J. Kim, "Thin hybrid metamaterial slab with negative and zero permeability for high efficiency and low electromagnetic field in wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 60, No. 4, 1001-1009, Aug. 2018.

    23. Wang, B., T. Nishino, and K. H. Teo, "Wireless power transmission efficiency enhancement with metamaterials," Proc. IEEE Int. Conf. Wireless Inf. Technol. Syst., Honululu, HI, USA, Aug. 28– Sep. 3, 2010.

    24. Urzhumov, Y. and D. R. Smith, "Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer," Phys. Rev. B, Vol. 83, 205114, 2011.
    doi:10.1103/PhysRevB.83.205114

    25. Wang, B., K. H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, and J. Zhang, "Wireless power transfer with metamaterials," Proc. Eur. Conf. Antennas Propag., 3905-3908, Rome, Italy, Apr. 11–15, 2011.

    26. Pendry, J. B., "Negative refraction," Contemporary Physics, Vol. 45, No. 3, 191-202, Aug. 7, 2006.
    doi:10.1080/00107510410001667434

    27. Cho, Y., et al., "Hybrid metamaterial with zero and negative permeability to enhance efficiency in wireless power transfer system," IEEE Wireless Power Transfer Conference (WPTC), 1-3, Aveiro, 2016.

    28. Cho, Y., S. Lee, D.-H. Kim, H. Kim, C. Song, S. Kong, J. Park, C. Seo, and J. Kim, "Thin hybrid metamaterial slab with negative and zero permeability for high efficiency and low electromagnetic field in wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 60, No. 4, 1001-1009, Aug. 2018.

    29. Cho, Y., J. J. Kim, D.-H. Kim, S. Lee, H. Kim, C. Song, S. Kong, H. Kim, C. Seo, S. Ahn, and J. Kim, "Thin PCB-type metamaterials for improved efficiency and reduced emf leakage in wireless power transfer systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 4, 353-364, Feb. 2016.

    30. Duan, G., et al., "Boosting magnetic resonance imaging signal-to-noise ratio using magnetic metamaterials," Communication Physics, Vol. 2, 35, 2019.
    doi:10.1038/s42005-019-0135-7

    31. Luukkonen, O., S. I. Maslovski, and S. A. Tretyakov, "A stepwise Nicolson-Ross-Weir-based material parameter extraction method," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1295-1298, 2011.
    doi:10.1109/LAWP.2011.2175897

    32. Bahl, J., Lumped Elements for RF and Microwave Circuits, Artech House, Norwood, MA, 2003.

    33. Lee, K., Z. Pantic, and S. M. Lukic, "Reflexive field containment in dynamic inductive power transfer systems," IEEE Trans. Power Electron., Vol. 29, No. 9, 4592-4602, Sep. 2014.
    doi:10.1109/TPEL.2013.2287262

    34. Zhang, Z., A. Georgiadis, and C. Cecati, "Wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 2, Feb. 2019.

    35. Chen, Y., M. Kung, and K. Lin, "Investigation of hybrid metamaterial for enhancing the efficiency of wireless power transfer systems," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1093-1094, San Diego, CA, 2017.

    36. Senior, D. E. and P. V. Parimi, "Planar wireless power transfer system with embedded magnetic metamaterial resonators," IEEE International Symposium on Antennas and Propagation (APSURSI), 607-608, Fajardo, 2016.

    37. Abdolkhani, A. and E. Coca, "Fundamentals of inductively coupled wireless power transfer systems," Wireless Power Transfer — Fundamentals and Technologies, 3-26, 2016.

    38. Zhong, W. X., et al., "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Trans. Power Electron., Vol. 30, No. 2, Feb. 2015.
    doi:10.1109/TPEL.2014.2312020

    39. Lee, E., X. Thai, S. Choi, C. Rim, and J. Huh, "Impedance transformers for compact and robust coupled magnetic resonance systems," IEEE Energy Convers. Congr. Expo., 2239-2244, Denver, USA, 2013.

    40. Assawaworrarit, S. and S. Fan, "Robust and efficient wireless power transfer using a switch-mode implementation of a nonlinear parity-time-symmetric circuit," Nature Electronics, Vol. 3, 273-279, 2020.
    doi:10.1038/s41928-020-0399-7