Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-03-03

Dynamically Switched Dual-Band Dual-Polarized Dual-Sense Low-Profile Compact Slot Circularly Polarized Antenna Assisted with High Gain Reflector for Sub-6 GHz and X-Band Applications

By Asutosh Mohanty and Bikash Ranjan Behera
Progress In Electromagnetics Research C, Vol. 110, 197-212, 2021
doi:10.2528/PIERC21010505

Abstract

A low-profile compact uni-planar slot antenna design of size 26 mm × 26 mm is proposed, assisted with a metallic bottom reflector at a height of λ/6 (λ is the lowest CP frequency). The dual-band dual-polarization is observed at 6.2 GHz and 9.3 GHz, and polarization sense (LHCP and RHCP) is dynamically switched by introducing a pair of RF p-i-n diodes mounted at the confluence of right-slot (RS) and left-slot (LS). The metallic reflector of size 60 mm × 60 mm helps to improve overall impedance matching, enhance antenna gain and asserts uni-directional dual-polarized radiation with good back-lobe suppression. The proposed antenna operates at dual bands (5.46-6.76 GHz) with 21.27% IBW and (8.18-10.48 GHz) with 24.65% IBW for S11 < -10 dB. The antenna gain reaches (7.82-8.75 dBi) for D1-OFF, D2-ON state with (9.2%, 15.63%) axial bandwidths and (6.42-7.0 dBi) for D1-ON, D2-OFF state with (7.53%, 16.04%) axial bandwidths with radiation efficiency ranging (75-87%). A prototype antenna is fabricated and measured, which shows good agreements with simulated performances and can be used for sub-6 GHz in 5G applications and X-band radar systems.

Citation


Asutosh Mohanty and Bikash Ranjan Behera, "Dynamically Switched Dual-Band Dual-Polarized Dual-Sense Low-Profile Compact Slot Circularly Polarized Antenna Assisted with High Gain Reflector for Sub-6 GHz and X-Band Applications," Progress In Electromagnetics Research C, Vol. 110, 197-212, 2021.
doi:10.2528/PIERC21010505
http://jpier.org/PIERC/pier.php?paper=21010505

References


    1. Wu, Q., J. Hirokawa, J. Yin, C. Yu, H. Wang, and W. Hong, "Millimeter-wave multibeam endfire dual-circularly polarized antenna array for 5G wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4930-4935, 2018.
    doi:10.1109/TAP.2018.2851667

    2. Mao, C., S. Gao, Y. Wang, Q. Chu, and X. Yang, "Dual-band circularly polarized shared-aperture array for C-/X-band satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5171-5178, 2017.
    doi:10.1109/TAP.2017.2740981

    3. Chen, Y., Y. Jiao, G. Zhao, F. Zhang, Z. Liao, and Y. Tian, "Dual-band dual-sense circularly polarized slot antenna with a C-shaped grounded strip," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 915-918, 2011.
    doi:10.1109/LAWP.2011.2166750

    4. Rui, X., J. Li, and K. Wei, "Dual-band dual-sense circularly polarised square slot antenna with simple structure," Electronics Letters, Vol. 52, No. 8, 578-580, 2016.
    doi:10.1049/el.2015.4499

    5. Zhao, Z., F. Liu, J. Ren, Y. Liu, and Y. Yin, "Dual-sense circularly polarized antenna with a dual-coupled line," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 8, 1415-1419, 2020.
    doi:10.1109/LAWP.2020.3003943

    6. Cao, W. Q., Q. Q. Wang, B. N. Zhang, and W. Hong, "Capacitive probe-fed compact dual-band dual-mode dual-polarisation microstrip antenna with broadened bandwidth," IET Microwaves & Antennas Propagation, Vol. 11, No. 7, 1003-1008, 2017.
    doi:10.1049/iet-map.2016.0781

    7. Chen, K., J. Yuan, and X. Luo, "Compact dual-band dual circularly polarised annular-ring patch antenna for BeiDou navigation satellite system application," IET Microwaves & Antennas Propagation, Vol. 11, No. 8, 1079-1085, 2017.
    doi:10.1049/iet-map.2016.1057

    8. Ding, K., C. Gao, Y. Wu, D. Qu, B. Zhang, and Y. Wang, "Dual-band and dual-polarized antenna with endfire radiation," IET Microwaves & Antennas Propagation, Vol. 11, No. 13, 1823-1828, 2017.
    doi:10.1049/iet-map.2017.0124

    9. Huang, D. and Z. Du, "Wideband dual-band dual-polarised antenna with less layer radiating patch," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1214-1218, 2019.
    doi:10.1049/iet-map.2018.5688

    10. Le, T. T. and H. H. Tran, "Dual-band dual-sense circularly polarized antenna based on crossed dipole structure for WLAN/WiMAX applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21866, 2019.
    doi:10.1002/mmce.21866

    11. Mukherjee, S. and A. Biswas, "Design of dual band and dual-polarised dual band SIW cavity backed bow-tie slot antennas," IET Microwaves, Antennas & Propagation, Vol. 10, No. 9, 1002-1009, 2016.
    doi:10.1049/iet-map.2015.0786

    12. Wang, M.-S., X.-Q. Zhu, Y.-X. Guo, and W. Wu, "Compact dual-band circularly polarised antenna with omnidirectional and unidirectional properties," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 259-264, 2017.
    doi:10.1049/iet-map.2017.0658

    13. Xu, R., J.-Y. Li, J. Liu, S.-G. Zhou, K. Wei, and Z.-J. Xing, "A simple design of compact dualwideband square slot antenna with dual-sense circularly polarized radiation for WLAN/Wi-Fi communications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4884-4889, 2018.
    doi:10.1109/TAP.2018.2851671

    14. Abdelrahim, W. and Q. Feng, "Compact broadband dual-band circularly polarised antenna for universal UHF RFID handheld reader and GPS applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1664-1670, 2019.
    doi:10.1049/iet-map.2018.5970

    15. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1487-1496, 2015.
    doi:10.1049/iet-map.2015.0172

    16. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Composite right-left-handed-based antenna with wide applications in very-high frequency-ultra-high frequency bands for radio transceivers," IET Microwaves, Antennas & Propagation, Vol. 9, No. 15, 1713-1726, 2015.
    doi:10.1049/iet-map.2015.0308

    17. Alibakhshikenari, M., S. M. Moghaddam, A. Uz Zaman, J. Yang, B. S. Virdee, and E. Limiti, "Wideband sub-6GHz self-grounded bow-tie antenna with new feeding mechanism for 5G communication systems," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, Krakow, Poland, 2019.

    18. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Triple-band planar dipole antenna for omnidirectional radiation," Microwave and Optical Technology Letters, Vol. 60, No. 4, 1048-1051, 2018.
    doi:10.1002/mop.31098

    19. Alibakhshikenari, M., E. Limiti, M. Naser-Moghadasi, B. S. Virdee, and R. A. Sadeghzadeh, "A new wideband planar antenna with band-notch functionality at GPS, Bluetooth and WiFi bands for integration in portable wireless systems," AEU — International Journal of Electronics and Communications, Vol. 72, 79-85, 2017.
    doi:10.1016/j.aeue.2016.11.023

    20. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band," Radio Science, Vol. 53, No. 2, 154-165, 2018.
    doi:10.1002/2017RS006515

    21. Alibakhshikenari, M., M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, "A new planar broadband antenna based on meandered line loops for portable wireless communication devices," Radio Science, Vol. 51, No. 7, 1109-1117, 2016.
    doi:10.1002/2016RS005973

    22. Alibakhshikenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "The resonating MTM-based miniaturized antennas for wide-band RF-microwave systems," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2339-2344, 2015.
    doi:10.1002/mop.29328

    23. Alibakhshikenari, M. and M. Naser-Moghadasi, "Novel UWB miniaturized integrated antenna based on CRLH metamaterial transmission lines," AEU — International Journal of Electronics and Communications, Vol. 69, No. 8, 1143-1149, 2015.
    doi:10.1016/j.aeue.2015.04.017

    24. Alibakhshikenari, M., M. Movahhedi, and H. Naderian, "A new miniature ultra wide band planar microstrip antenna based on the metamaterial transmission line," 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 293-297, Melaka, Malaysia, 2012.

    25. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Wideband planar array antenna based on SCRLH-TL for airborne synthetic aperture radar application," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 12, 1586-1599, 2018.
    doi:10.1080/09205071.2018.1460280

    26. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Array antenna for synthetic aperture radar operating in X and Ku-bands: A study to enhance isolation between radiation elements," EUSAR 2018 12th European Conference on Synthetic Aperture Radar, 1-5, Aachen, Germany, 2018.

    27. Alibakhshikenari, M., M. Naser-Moghadasi, B. S. Virdee, A. Andujar, and J. Anguera, "Compact antenna based on a composite right/left-handed transmission line," Microwave and Optical Technology Letters, Vol. 57, No. 8, 1785-1788, 2015.
    doi:10.1002/mop.29191

    28. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, F. Falcone, and E. Limiti, "Metasurface for controlling polarization of scattered EM waves," 2020 4th Australian Microwave Symposium (AMS), 1-2, Sydney, NSW, Australia, 2020.

    29. Alibakhshikenari, M., et al., "Mutual coupling reduction using metamaterial supersubstrate for high performance & densely packed planar phased arrays," 2018 22nd International Microwave and Radar Conference (MIKON), 675-678, Poznan, Poland, 2018.

    30. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna design using metamaterial transmission lines," Radio Science, Vol. 52, No. 12, 1510-1521, 2017.
    doi:10.1002/2017RS006313

    31. Alibakhshikenari, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, M. Khalily, F. Falcone, and E. Limiti, "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 198, 2018.
    doi:10.3390/electronics7090198

    32. Zhang, H., Y. Guo, and G. Wang, "A wideband circularly polarized crossed-slot antenna with stable phase center," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 941-945, 2019.
    doi:10.1109/LAWP.2019.2906363

    33. Bhattacharjee, A., S. Dwari, and M. K. Mandal, "Polarization-reconfigurable compact monopole antenna with wide effective bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 1041-1045, 2019.
    doi:10.1109/LAWP.2019.2908661

    34. Chen, Q., J. Li, G. Yang, B. Cao, and Z. Zhang, "A polarization-reconfigurable high-gain microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3461-3466, 2019.
    doi:10.1109/TAP.2019.2902750

    35. Midya, M., S. Bhattacharjee, and M. Mitra, "CPW-fed dual-band dual-sense circularly polarized antenna for WiMAX application," Progress In Electromagnetics Research Letters, Vol. 81, 113-120, 2019.
    doi:10.2528/PIERL18091306

    36. Kumar, P., S. Dwari, R. K. Saini, and M. K. Mandal, "Dual-band dual-sense polarization reconfigurable circularly polarized antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 64-68, 2019.
    doi:10.1109/LAWP.2018.2880799

    37. Chaudhary, P., A. Kumar, and B. K. Kanaujia, "A low-profile wideband circularly polarized MIMO antenna with pattern and polarization diversity," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 4, 316-322, 2020.
    doi:10.1017/S175907871900134X

    38. Ameen, M., A. Ozair, and R. K. Chaudhary, "Single split-ring resonator loaded self-decoupled dual-polarized MIMO antenna for mid-band 5G and C-band applications," AEU — International Journal of Electronics and Communications, Vol. 124, 153336, 2020.
    doi:10.1016/j.aeue.2020.153336

    39. Birwal, A., S. Singh, B. K. Kanaujia, and S. Kumar, "CPW-fed ultra-wideband dual-sense circularly polarized slot antenna," Progress In Electromagnetics Research C, Vol. 94, 219-231, 2019.
    doi:10.2528/PIERC19052005

    40. Chung, K. L., X. Yan, Y. Li, and Y. Li, "A jia-shaped artistic patch antenna for dual-band circular polarization," AEU — International Journal of Electronics and Communications, Vol. 120, 153207, 2020.
    doi:10.1016/j.aeue.2020.153207

    41. Mohanty, A. and B. R. Behera, "Investigation of 2-port UWB MIMO diversity antenna design using characteristics mode analysis," AEU — International Journal of Electronics and Communications, Vol. 124, 153361, 2020.
    doi:10.1016/j.aeue.2020.153361

    42. Koley, S., L. Murmu, and B. Pal, "A pattern reconfigurable antenna for WLAN and WiMAX systems," Progress In Electromagnetics Research C, Vol. 66, 183-190, 2016.
    doi:10.2528/PIERC16052306

    43. Kowalewski, J., J. Atuegwu, J. Mayer, T. Mahler, and T. Zwick, "A low-profile pattern reconfigurable antenna system for automotive MIMO applications," Progress In Electromagnetics Research, Vol. 161, 41-55, 2018.
    doi:10.2528/PIER18010914

    44. Behera, B. R., P. Srikanth, P. R. Meher, and S. K. Mishra, "A compact broadband circularly polarized printed monopole antenna using twin parasitic conducting strips and rectangular metasurface for RF energy harvesting application," AEU — International Journal of Electronics and Communications, Vol. 120, 15233, 2020.