Vol. 110
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-16
Analysis of a Nonlinear Magnetic Coupling Wireless Power Transfer System
By
Progress In Electromagnetics Research C, Vol. 110, 15-26, 2021
Abstract
In near-field energy transmission, it has been proved that magnetic coupling wireless power transfer (MC-WPT) is a promising energy transmission method. Traditionally, the MC-WPT system is established based on a linear resonant circuit. Recently, it has been reported that nonlinear MC-WPT system shows more advantages. However, nonlinear characteristics of the nonlinear MC-WPT system are not fully recovered. In this paper, a nonlinear MC-WPT system which can be described by Duffing equation is presented. The mathematical model of the equivalent circuit is developed. The related nonlinear characteristics under the impact of driving force are investigated. It is found that the driving force has a direct impact on the system performance. The operation of the nonlinear MC-WPT system varies from periodic sinusoidal state to periodic non-sinusoidal state even to chaotic state when the driving force increases. It should be mentioned that the chaotic state should be avoided. Generally, the MC-WPT system should be operated in periodic sinusoidal state which only covers a small range of driving force. For the system operated in periodic non-sinusoidal state, a waveform correcting circuit is designed. The simulated and experimental results show that the restriction of the driving force on the operation of the system is eliminated with a waveform correcting circuit added. It is possible for the nonlinear MC-WPT system to be operated in a much wider range.
Citation
Meng Wang, Li Ren, Yanyan Shi, Weina Liu, and Hao Ran Wang, "Analysis of a Nonlinear Magnetic Coupling Wireless Power Transfer System," Progress In Electromagnetics Research C, Vol. 110, 15-26, 2021.
doi:10.2528/PIERC20123106
References

1. Biswal, S. S., D. P. Kar, and S. Bhuyan, "Parameter trade-off between electric load, quality factor and coupling coefficient for performance enrichment of wireless power transfer system," Progress In Electromagnetics Research M, Vol. 91, 49-58, 2020.
doi:10.2528/PIERM20010902

2. Huang, Y. C., C. H. Liu, Y. Xiao, and S. Y. Liu, "Separate power allocation and control method based on multiple power channels for wireless power transfer," IEEE Trans. Power Electron., Vol. 35, No. 9, 9046-9056, 2020.
doi:10.1109/TPEL.2020.2973465

3. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.
doi:10.2528/PIERL18032301

4. Sahany, S., S. S. Biawal, D. P. Kar, P. K. Sahoo, and S. Bhuyan, "Impact of functioning parameters on the wireless power transfer system used for electric vehicle charging," Progress In Electromagnetics Research, Vol. 79, 187-197, 2019.
doi:10.2528/PIERM18092610

5. Wang, Q., W. Che, M. Dionigi, F. Mastri, M. Mongiardo, and G. Monti, "Gains maximization via impedance matching networks for wireless power transfer," Progress In Electromagnetics Research, Vol. 164, 135-153, 2019.
doi:10.2528/PIER18102402

6. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Trans. Electromagn. Compat., Vol. 60, No. 6, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265

7. Parise, M., L. Lombardi, F. Ferranti, and G. Antonini, "Magnetic coupling between coplanar filamentary coil antennas with uniform current," IEEE Trans. Electromagn. Compat., Vol. 62, No. 2, 622-626, 2020.
doi:10.1109/TEMC.2019.2904516

8. Shinohara, N., "The wireless power transmission: Inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Rev.: Energy Environ., Vol. 1, No. 3, 337-346, 2012.
doi:10.1002/wene.43

9. Ren, J. S., P. Hu, D. S. Yang, and D. Liu, "Tuning of mid-range wireless power transfer system based on delay-iteration method," IET Power Electronics, Vol. 9, No. 8, 1563-1570, 2016.
doi:10.1049/iet-pel.2015.0291

10. Jiwariyavej, V., T. Imura, and Y. Hori, "Coupling coefficients estimation of wireless power transfer system via magnetic resonance coupling using information from either side of the system," IEEE J. Emerging Sel. Topics Power Electron., Vol. 3, No. 1, 191-200, 2015.
doi:10.1109/JESTPE.2014.2332056

11. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Trans. Ind. Electron., Vol. 56, No. 8, 3060-3068, 2009.
doi:10.1109/TIE.2009.2023633

12. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 7, 4809-4817, 2017.

13. Costanzo, A., et al., "Conditions for a load-independent operating regime in resonant inductive WPT," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 4, 1066-1076, 2017.
doi:10.1109/TMTT.2017.2669987

14. Hui, S. Y. R., W. X. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 9, 4500-4511, 2014.
doi:10.1109/TPEL.2013.2249670

15. Shin, J., S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S. J. Jeon, and D. H. Cho, "Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles," IEEE Trans. Ind. Electron., Vol. 61, No. 3, 1179-1192, 2014.
doi:10.1109/TIE.2013.2258294

16. Nguyen, D. H., "Electric vehicle — Wireless charging-discharging lane decentralized peer-to-peer energy trading," IEEE Access, Vol. 8, 179616-179625, 2020.
doi:10.1109/ACCESS.2020.3027832

17. Huang, L. Y., A. Murray, and B. W. Flynn, "A high-efficiency low-power rectifier for wireless power transfer systems of deep micro-implants," IEEE Access, Vol. 8, 204057-204067, 2020.
doi:10.1109/ACCESS.2020.3036703

17. Huang, L. Y., A. Murray, and B. W. Flynn, "A high-efficiency low-power rectifier for wireless power transfer systems of deep micro-implants," IEEE Access, Vol. 8, 204057-204067, 2020.
doi:10.1109/ACCESS.2020.3036703

18. Huang, L. Y., A. Murray, and B. W. Flynn, "Optimal design of a 3-coil wireless power transfer system for deep micro-implants," IEEE Access, Vol. 8, 193183-193201, 2020.
doi:10.1109/ACCESS.2020.3031960

19. Riehl, P., et al., "Wireless power systems for mobile devices supporting inductive and resonant operating modes," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 3, 780-790, Mar. 2015.
doi:10.1109/TMTT.2015.2398413

20. Zhang, Y. M. and Z. M. Zhao, "Frequency splitting analysis of two-coil resonant wireless power transfer," IEEE Antennas Wireless Propag. Lett., Vol. 13, 400-402, 2014.
doi:10.1109/LAWP.2014.2307924

21. De Miranda, C. M. and S. F. Pichorim, "A self-resonant two-coil wireless power transfer system using open bifilar coils," IEEE Trans. Circuits Syst., II, Exp. Briefs, Vol. 64, No. 6, 615-619, 2017.
doi:10.1109/TCSII.2016.2595402

22. Wang, S. M., Z. Y. Hu, C. C. Rong, X. Tao, C. H. Lu, J. F. Chen, and M. H. Liu, "Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system," IEEE Antennas Wireless Propag. Lett., Vol. 12, No. 7, 1132-1139, 2018.

23. Zhong, W. and S. Y. R. Hui, "Maximum energy efficiency operation of series-series resonant wireless power transfer systems using on-off keying modulation," IEEE Trans. Power Electron., Vol. 33, No. 4, 3595-3603, 2018.
doi:10.1109/TPEL.2017.2709341

24. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L. W. Li, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835

25. Lim, Y., H. Tang, S. Lim, and J. Park, "An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 8, 4403-4413, 2014.
doi:10.1109/TPEL.2013.2292596

26. Wang, M., J. Feng, Y. Y. Shi, and M. H. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., Vol. 66, No. 3, 1842-1851, 2019.

27. Ricketts, D. S., M. Chabalko, and A. Hillenius, "Tri-loop impedance and frequency matching with high-Q resonators in wireless power transfer," IEEE Antennas Wireless Propag. Lett., Vol. 13, 341-344, 2014.
doi:10.1109/LAWP.2014.2299896

28. Stein, A. L. F., P. A. Kyaw, and C. R. Sullivan, "Wireless power transfer utilizing a high-Q self-resonant structure," IEEE Trans. Power Electron., Vol. 34, No. 7, 6722-6735, 2019.
doi:10.1109/TPEL.2018.2874878

29. Wang, M., C. Zhou, M. H. Shen, and Y. Y. Shi, "Frequency drift insensitive broadband wireless power transfer system," AEU --- Int. J. Electron. Commun., Vol. 117, 2020.

30. Chen, Y. F., W. X. Xiao, Z. P. Guan, B. Zhang, D. Y. Qiu, and M. Y. Wu, "Nonlinear modeling and harmonic analysis of magnetic resonant WPT system based on equivalent small parameter method," IEEE Trans. Ind. Electron., Vol. 66, No. 8, 6604-6612, 2019.
doi:10.1109/TIE.2019.2896077

31. Assawaworrarit, S., X. F. Yu, and S. H. Fan, "Robust wireless power transfer using a nonlinear parity-time-symmetric circuit," Nature, Vol. 546, No. 7658, 387-390, 2017.
doi:10.1038/nature22404

32. Abdelatty, O., X. Y. Wang, and A. Mortazawi, "Position-insensitive wireless power transfer based on nonlinear resonant circuits," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 9, 3844-3855, 2019.
doi:10.1109/TMTT.2019.2904233

33. Kovacic, I. and M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behavior, Wiley, Hoboken, NJ, USA, 2011.
doi:10.1002/9780470977859

34. Wang, X. Y. and A. Mortazawi, "Bandwidth enhancement of RF resonators using duffing nonlinear resonance for wireless power applications," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3695-3702, 2016.
doi:10.1109/TMTT.2016.2603984

35. Vernizzi, G. J., S. Lenci, and G. R. Franzini, "A detailed study of the parametric excitation of a vertical heavy rod using the method of multiple scales," Meccanica, Vol. 55, No. 12, 2423-2437, 2020.
doi:10.1007/s11012-020-01247-6

36. Gargour, C. S. and V. Ramachandran, "A simple design method for transitional Butterworth-Chebyshev filters," J. Instit. Electron. Radio Eng., Vol. 58, No. 6, 291-294, 1988.
doi:10.1049/jiere.1988.0072