Vol. 109

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-07

System of Material Objects in Electrodynamic Volumes

By Mikhail Nesterenko, Viktor A. Katrich, Sergey L. Berdnik, and Victor I. Kijko
Progress In Electromagnetics Research C, Vol. 109, 205-216, 2021
doi:10.2528/PIERC20122301

Abstract

In general, the problem of the excitation (radiation, scattering) of electromagnetic fields by a system of finite-dimensional material objects in arbitrary electrodynamic volumes is formulated. On the basis of the impedance concept, the problem is reduced to solving two-dimensional integral equations for electric surface currents on material objects. A physically correct transition from the obtained integral equations to a system of one-dimensional equations for currents on electrically thin impedance vibrators (monopoles) with electrophysical and geometric parameters that can be irregular along their length is made. As an example, a system of two monopoles with a variable surface impedance located in a rectangular waveguide is considered. The problem was solved by the generalized method of induced electromotive forces (EMF). A distinctive feature of this method is that the current distribution functions found by the asymptotic averaging method are used to solve integral equations for currents. The numerical and experimental results concerning electrodynamic characteristics of the structure under consideration are presented.

Citation


Mikhail Nesterenko, Viktor A. Katrich, Sergey L. Berdnik, and Victor I. Kijko, "System of Material Objects in Electrodynamic Volumes," Progress In Electromagnetics Research C, Vol. 109, 205-216, 2021.
doi:10.2528/PIERC20122301
http://jpier.org/PIERC/pier.php?paper=20122301

References


    1. Al-Hakkak, M. J., "Experimental investigation of the input-impedance characteristics of an antenna in a rectangular waveguide," Electronics Letters, Vol. 5, 513-514, 1969.
    doi:10.1049/el:19690385

    2. Craven, G. F. and C. K. Mok, "The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic," IEEE Trans. Microwave Theory Tech., Vol. 19, 295-308, 1971.
    doi:10.1109/TMTT.1971.1127503

    3. Eisenhart, R. L. and P. J. Khan, "Theoretical and experimental analysis of a waveguide mounting structure," IEEE Trans. Microwave Theory Tech., Vol. 19, 706-719, 1971.
    doi:10.1109/TMTT.1971.1127612

    4. Petlenko, V. A. and M. V. Nesterenko, "Current distribution and resonance of rod conductors in a rectangular waveguide," Radiophysics Quantum Electronics, Vol. 27, 236-241, 1984.
    doi:10.1007/BF01035044

    5. Lopuch, S. L. and T. K. Ishii, "Field distribution of two conducting posts in a waveguide," IEEE Trans. Microwave Theory Tech., Vol. 32, 29-33, 1984.
    doi:10.1109/TMTT.1984.1132607

    6. Williamson, A. G., "Variable-length cylindrical post in a rectangular waveguide," IEE Proceedings, Vol. 133, Pt. H, 1-9, 1986.
    doi:10.1049/ip-d.1986.0001

    7. Hashemi-Yeganeh, S. and C. R. Birtcher, "Numerical and experimental studies of current distributions on thin metallic posts inside rectangular waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, 1063-1068, 1994.
    doi:10.1109/22.293577

    8. Roelvink, J. and A. G. Williamson, "Reactance of hollow, solid, and hemispherical-cap cylindricalposts in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 53, 3156-3160, 2005.
    doi:10.1109/TMTT.2005.855356

    9. Kirilenko, A., D. Kulik, L. Mospan, and L. Rud, "Two notched band two post waveguide," Proc. of 12th Int. Math. Methods Electromagn. Theory Conf., 164-166, 2008.

    10. Tomassoni, C. and R. Sorrentino, "A new class pseudoelliptic waveguide filters using dual-post resonators," IEEE Trans. Microwave Theory Tech., Vol. 61, 2332-2339, 2013.
    doi:10.1109/TMTT.2013.2258171

    11. Cassedy, E. S. and J. Fainberg, "Back scattering cross sections of cylindrical wires of finite conductivity," IEEE Trans. Antennas Propagat., Vol. 8, 1-7, 1960.
    doi:10.1109/TAP.1960.1144803

    12. King, R. W. P. and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas and Propagat., Vol. 14, 524-534, 1966.
    doi:10.1109/TAP.1966.1138733

    13. Lamensdorf, D., "An experimental investigation of dielectric-coated antennas," IEEE Trans. Antennas Propagat., Vol. 15, 767-771, 1967.
    doi:10.1109/TAP.1967.1139049

    14. Inagaki, N., O. Kukino, and T. Sekiguchi, "Integral equation analysis of cylindrical antennas characterized by arbitrary surface impedance," IEICE Trans. Commun., Vol. 55-B, 683-690, 1972.

    15. Bretones, A. R., R. G. Martın, and I. S. Garcıa, "Time-domain analysis of magnetic-coated wire antennas," IEEE Trans. Antennas Propagat., Vol. 43, 591-596, 1995.
    doi:10.1109/8.387174

    16. Nesterenko, M. V., "The electromagnetic wave radiation from a thin impedance dipole in a lossy homogeneous isotropic medium," Telecommunications and Radio Engineering, Vol. 61, 840-853, 2004.
    doi:10.1615/TelecomRadEng.v61.i10.40

    17. Hanson, G. W., "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas Propagat. Mag., Vol. 50, No. 3, 66-77, 2008.
    doi:10.1109/MAP.2008.4563565

    18. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.
    doi:10.1007/978-1-4419-7850-9

    19. Lewin, L., Theory of Waveguides. Techniques for the Solution of Waveguide Problems, Newnes-Butterworths, London, 1975.

    20. Gorobets, N. N., M. V. Nesterenko, V. A. Petlenko, and N. A. Khizhnyak, "Thin impedance vibrator in a rectangular waveguide," Radio Eng., Vol. 39, 65-68, 1984.

    21. Gorobets, N. N., M. V. Nesterenko, and V. A. Petlenko, "Resonance characteristics of thin impedance dipoles in a cutoff rectangular waveguide," Telecommunications Radio Eng., Vol. 45, No. 4, 110-112, 1990.

    22. Penkin, D. Yu, V. A. Katrich, Yu. M. Penkin, M. V. Nesterenko, V. M. Dakhov, and S. L. Berdnik, "Electrodynamic characteristics of a radial impedance vibrator on a perfect conduction sphere," Progress In Electromagnetics Research B, Vol. 62, 137-151, 2015.
    doi:10.2528/PIERB14120102

    23. Penkin, Yu. M., V. A. Katrich, M. V. Nesterenko, S. L. Berdnik, and V. M. Dakhov, Electromagnetic Fields Excited in Volumes with Spherical Boundaries, Springer Nature Swizerland AG, Cham, Swizerland, 2019.
    doi:10.1007/978-3-319-97819-2

    24. Wu, T. T. and R. W. P. King, "The cylindrical antenna with nonreflecting resistive loading," IEEE Trans. Antennas Propag., Vol. 13, 369-373, 1965.
    doi:10.1109/TAP.1965.1138429

    25. Shen, L.-C., "An experimental study of the antenna with nonreflecting resistive loading," IEEE Trans. Antennas Propagat., Vol. 15, 606-611, 1967.
    doi:10.1109/TAP.1967.1139025

    26. Taylor, C. D., "Cylindrical transmitting antenna: Tapered resistivity and multiple impedance loadings," IEEE Trans. Antennas Propagat., Vol. 16, 176-179, 1968.
    doi:10.1109/TAP.1968.1139146

    27. Rao, B. L. J., J. E. Ferris, and W. E. Zimmerman, "Broadband characteristics of cylindrical antennas with exponentially tapered capacitive loading," IEEE Trans. Antennas Propagat., Vol. 17, 145-151, 1969.
    doi:10.1109/TAP.1969.1139408

    28. Yeliseyeva, N. P., S. L. Berdnik, V. A. Katrich, and M. V. Nesterenko, "Electrodynamic characteristics of horizontal impedance vibrator located over a finite-dimensional perfectly conducting screen," Progress In Electromagnetics Research B, Vol. 63, 275-288, 2015.
    doi:10.2528/PIERB15043003

    29. Garb, H. L., P. Sh. Friedberg, and I. M. Yakover, "Diffraction of an H10-wave on a thin resistive film with a stepwise change of surface impedance in a rectangular waveguide," Radioengineering Electronics, Vol. 30, 41-48, 1985 (in Russian).

    30. Miek, D., P. Boe, F. Kamrath, and M. Hoft, "Techniques for the generation of multiple additional transmission zeros in H-plane waveguide filters," International Journal of Microwave and Wireless Technologies, 723-732, 2020.
    doi:10.1017/S1759078720000811

    31. Khizhnyak, N. A., Integral Equations of Macroscopical Electrodynamics, Naukova dumka, Kiev, 1986 (in Russian).