Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-21

Design of Dual-Band Conformal AMC Integrated Antenna for SAR Reduction in WBAN

By Bidisha Hazarika, Banani Basu, and Arnab Nandi
Progress In Electromagnetics Research C, Vol. 110, 91-102, 2021
doi:10.2528/PIERC20121202

Abstract

A wearable, miniaturized, dual-band, Artificial Magnetic Conductor (AMC) integrated antenna operating on ISM band (2.38-2.47 GHz) and WLAN band (5.11-5.31 GHz) is proposed for Wireless Body Area Network (WBAN). A dumbbell shaped unit-cell is designed to achieve zero reflection phase and modified material characteristics. When 2×2 array of dumbbell shaped AMC is put underneath the monopole, the antenna gain increases up to 9.5 dB and 8.1 dB at 2.43 GHz and 5.2 GHz respectively. Different bending conditions have been considered to confirm the robustness of the AMC antenna. Debye model is used to approximate the dielectric properties within phantom tissue model. Antenna shields most of the backward radiation and reduces the specific absorption rate (SAR) of the integrated antenna by more than 95% in 1-g of phantom hand tissues at both the frequencies. The acquired results exhibit that the AMC antenna is more secure for on body applications.

Citation


Bidisha Hazarika, Banani Basu, and Arnab Nandi, "Design of Dual-Band Conformal AMC Integrated Antenna for SAR Reduction in WBAN," Progress In Electromagnetics Research C, Vol. 110, 91-102, 2021.
doi:10.2528/PIERC20121202
http://jpier.org/PIERC/pier.php?paper=20121202

References


    1. Zhai, H., K. Zhang, S. Yang, and D. Feng, "A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2692-2695, 2017.
    doi:10.1109/LAWP.2017.2741465

    2. Mersani, A., L. Osman, and J.-M. Ribero, "Performance of dual-band AMC antenna for wireless local area network applications," IET Microwave and Antenna Propagation, Vol. 12, No. 6, 872-878, 2018.
    doi:10.1049/iet-map.2017.0476

    3. Misra, P., S. S. Pattnaik, W. Cao, S. Shi, Q. Wang, and W. Zhong, "Metamaterial loaded fractal based interdigital capacitor antenna for communication systems," Progress In Electromagnetics Research M, Vol. 16, 2473-2476, 2018.

    4. Ayd, A. and R. Rad, "Low-profile MIMO antenna arrays with left-handed metamaterial structures for multiband operation," Progress In Electromagnetics Research M, Vol. 89, 1-11, 2020.

    5. Moreira, E. C., R. O. Martins, B. M. S. Ribeiro, and A. S. B. Sombra, "A novel gain-enhanced antenna with metamaterial planar lens for long-range UHF RFID applications," Progress In Electromagnetics Research B, Vol. 85, 143-161, 2019.
    doi:10.2528/PIERB19081501

    6. Kwak, S. I., D.-U. Sim, J. H. Kwon, and Y. J. Yoon, "Design of PIFA with metamaterials for body-SAR reduction in wearable applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 297-300, 2017.
    doi:10.1109/TEMC.2016.2593493

    7. Cao, Y. F., X. Y. Zhang, and T. Mo, "Low-profile conical-pattern slot antenna with wideband performance using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2210-2218, 2018.
    doi:10.1109/TAP.2018.2809619

    8. Alemaryeen, A. and S. Noghanian, "Crumpling effects and specific absorption rates of flexible AMC integrated antennas," IET Microwave and Antenna Propagation, Vol. 12, No. 4, 627-635, 2018.
    doi:10.1049/iet-map.2017.0652

    9. Wang, M., Z. Yang, J. Wu, J. Bao, J. Liu, L. Cai, T. Dang, H. Zheng, and E. Li, "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, 2018.
    doi:10.1109/TAP.2018.2820733

    10. Lee, H., J. Tak, and J. Choi, "Wearable antenna integrated into military berets for indoor/outdoor positioning system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1919-1922, 2017.
    doi:10.1109/LAWP.2017.2688400

    11. Hazarika, B., B. Basu, and A. Nandi, "Design of antennas using artificial magnetic conductor layer to improve gain, flexibility, and specific absorption rate," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3928-3935, 2020.
    doi:10.1002/mop.32531

    12. Hazarika, B., B. Basu, and A. Nandi, "An artificial magnetic conductor-backed monopole antenna to obtain high gain, conformability, and lower specific absorption rate for WBAN applications," International Journal of RF and Microwave Computer-aided Engineering, Vol. 30, No. 12, 1-9, 2020.
    doi:10.1002/mmce.22441

    13. Atrash, M. E., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 1-10, 2019.
    doi:10.1109/TAP.2019.2923058

    14. Atrash, M. E., M. A. Abdalla, and H. M. Elhennawy, "A compact highly efficient-section CRLH antenna loaded with textile AMC for wireless body area network applications," IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2020.3010622.

    15. Ghosh, A., S. Chakraborty, S. Chattopadhyay, A. Nandi, and B. Basu, "Rectangular microstrip antenna with dumbbell shaped defected ground structure for improved cross polarised radiation in wide elevation angle and its theoretical analysis," IET Microwave and Antenna Propagation, Vol. 10, No. 1, 1-11, 2016.
    doi:10.1049/iet-map.2015.0179

    16. Gabriely, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics Medical Biology, Vol. 41, No. 11, 2271-2293, 1996.
    doi:10.1088/0031-9155/41/11/003

    17. Sievenpiper, D. F., D. C. Dawson, M. M. Jacob, T. Kanar, S. Kim, J. Long, and R. G. Quarfoth, "Experimental validation of performance limits and design guidelines for small antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 8-19, 2012.
    doi:10.1109/TAP.2011.2167938