Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-06

Air-Gap Correction for High Power Microwave Measurements of Conductive Materials

By John Berns Lancaster, Daniel Chandler, Eun Ju Moon, Ahmed Hassan, and Anthony Caruso
Progress In Electromagnetics Research C, Vol. 108, 1-12, 2021
doi:10.2528/PIERC20112601

Abstract

Measurements of the complex permittivity and permeability of solids at high electromagnetic field greater than 10 kV/m pose a significant challenge to RF connectors and input amplifiers of the measurement equipment. Specifically, difficulties arise in measuring materials with high imaginary permittivity or low impedance, which act as short circuits, either exceeding the measurement equipment damage threshold or that of the material under test, and/or inducing an unacceptable signal-to-noise in the collected data. In this work, we report the development of a new measurement technique where we introduce an outer air-gap between the material under test and the conductor of a coax airline. The introduced air-gap reduces the effective conductivity of the sample, mitigating damage to the materials under test and allowing for high power measurement. This study compares the ability of air-gap correction methods to recover the complex permittivity and permeability to within 10% of the value measured without an air-gap introduced.

Citation


John Berns Lancaster, Daniel Chandler, Eun Ju Moon, Ahmed Hassan, and Anthony Caruso, "Air-Gap Correction for High Power Microwave Measurements of Conductive Materials," Progress In Electromagnetics Research C, Vol. 108, 1-12, 2021.
doi:10.2528/PIERC20112601
http://jpier.org/PIERC/pier.php?paper=20112601

References


    1. Nadaud, K., C. Borderon, R. Renoud, A. Ghalem, A. Crunteanu, L. Huitema, F. Dumas-Bouchiat, P. Marchet, C. Champeaux, and H. W. Gundel, "Domain wall motions in BST ferroelectric thin films in the microwave frequency range," Appl. Phys. Lett., Vol. 109, No. 26, 1-5, 2016.
    doi:10.1063/1.4973451

    2. Borderon, C., R. Renoud, M. Ragheb, and H. W. Gundel, "Description of the low field nonlinear dielectric properties of ferroelectric and multiferroic materials," Appl. Phys. Lett., Vol. 98, No. 11, 11-13, 2011.
    doi:10.1063/1.3567777

    3. Balci, O., E. O. Polat, N. Kakenov, and C. Kocabas, "Graphene-enabled electrically switchable radar-absorbing surfaces," Nature Communications, Vol. 6, 1-9, 2015.

    4. Yao, X., X. Kou, and J. Qiu, "Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability," Carbon, Vol. 107, 261-267, 2016.
    doi:10.1016/j.carbon.2016.05.055

    5. Che, R. C., C. Y. Zhi, C. Y. Liang, and X. G. Zhou, "Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite," Appl. Phys. Lett., Vol. 88, No. 3, 1-3, 2006.
    doi:10.1063/1.2165276

    6. Lv, R., F. Kang, J. Gu, X. Gui, J. Wei, K. Wang, and D. Wu, "Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber," Appl. Phys. Lett., Vol. 93, No. 22, 2006-2009, 2008.
    doi:10.1063/1.3042099

    7. Zhang, B., J. Wang, J. Wang, S. Huo, B. Zhang, and Y. Tang, "Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites," Journal of Magnetism and Magnetic Materials, Vol. 413, 81-88, 2016.
    doi:10.1016/j.jmmm.2016.04.014

    8. Gui, X., W. Ye, J. Wei, K. Wang, R. Lv, H. Zhu, F. Kang, J. Gu, and D. Wu, "Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption," Journal of Physics D: Applied Physics, Vol. 42, No. 7, 075002, 2009.
    doi:10.1088/0022-3727/42/7/075002

    9. Ganchev, S. I., N. Qaddoumi, S. Bakhtiari, and R. Zoughi, "Calibration and measurement of dielectric properties of finite thickness composite sheets with open-ended coaxial sensors," IEEE Transactions on Instrumentation and Measurement, Vol. 44, No. 6, 1023-1029, 1995.
    doi:10.1109/19.475149

    10. Drinovsky, J. and Z. Kejık, "Electromagnetic shielding efficiency measurement of composite materials," Measurement Science Review, Vol. 9, No. 4, 109-112, 2009.
    doi:10.2478/v10048-009-0020-8

    11. Havrilla, M. J. and D. P. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, 158-163, 2006.
    doi:10.1109/TIM.2005.861249

    12. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, 2008.

    13. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
    doi:10.1109/TIM.1970.4313932

    14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
    doi:10.1109/PROC.1974.9382

    15. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," NASA STI/Recon Technical Report N, Vol. 93, 12084, 1992.

    16. Barry, W., "A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 1, 80-84, 1986.
    doi:10.1109/TMTT.1986.1133283

    17. Hassan, A. M., J. Obrzut, and E. J. Garboczi, "A Q-band free-space characterization of carbon nanotube composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3807-3819, 2016.
    doi:10.1109/TMTT.2016.2603500

    18. Vanzura, E. J., J. R. Baker-Jarvis, J. H. Grosvenor, and M. D. Janezic, "Intercomparison of permittivity measurements using the transmission/reflection method in 7-mm coaxial transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 11, 2063-2070, 1994.
    doi:10.1109/22.330120

    19. Wang, Y., I. Hooper, E. Edwards, and P. S. Grant, "Gap-corrected thin-film permittivity and permeability measurement with a broadband coaxial line technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 3, 924-930, 2016.

    20. Jamaian, S. S. and T. G. Mackay, "On limitations of the Bruggeman formalism for inverse homogenization," Journal of Nanophotonics, Vol. 4, No. 1, 1-8, 2010.
    doi:10.1117/1.3460908

    21. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," Tech. Rep., NIST, 1992.

    22. Whites, K. W., "Electromagnetic wave propagation through circular waveguides containing radially inhomogeneous lossy media," Tech. Rep., Construction Engineering Research Lab, (ARMY), Champaign, IL, 1989.

    23. Fehlen, R. G., Air gap error compensation for coaxial transmission line, Ph.D. dissertation, Air Force Institute, 2006.

    24. Mattar, K. E., D. G. Watters, M. E. Brodwin, and L. S. Member, "Influence of wall contacts on measured complex permittivity spectra at coaxial line frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 532-537, 1991.
    doi:10.1109/22.75297

    25. Leuchtmann, P. and J. Rufenacht, "On the calculation of the electrical properties of precision coaxial lines," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 2, 392-397, 2004.
    doi:10.1109/TIM.2003.822719

    26. Kim, S., H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, "Switchable nonlinear metasurfaces for absorbing high power surface waves," Applied Physics Letters, Vol. 108, No. 4, 1-5, 2016.

    27. Luo, Z., X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, "Nonlinear power-dependent impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1736-1745, 2015.
    doi:10.1109/TAP.2015.2399513

    28. Riddle, B., J. Baker-Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 727-733, 2003.
    doi:10.1109/TMTT.2003.808730

    29. Belous, A., O. Ovchar, and D. Mischuk, "Temperature trends of the permittivity in complex oxides of rare-earth elements with perovskite-type structure," Condensed Matter Physics, Vol. 6, No. 2, 251, 2003.
    doi:10.5488/CMP.6.2.251