Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-11

A Tri-Band Negative Group Delay Circuit for Multiband Wireless Applications

By Yuwei Meng, Zhongbao Wang, Shao-Jun Fang, and Hongmei Liu
Progress In Electromagnetics Research C, Vol. 108, 159-169, 2021
doi:10.2528/PIERC20112201

Abstract

A tri-band negative group delay (NGD) microwave circuit for multiband wireless applications is proposed and self-matched without the need for external matching networks. The frequency range can be influenced by the characteristic impedance of the microstrip lines. Under the condition that the microstrip circuit can be implemented with the common printed circuit board (PCB) fabrication technology, the frequency ratio of the highest NGD band to the lowest NGD band can vary between 3.8 and 10.9. For verification, a 1.2/3.5/5.8-GHz tri-band NGD circuit for Beidou B2, WiMax, and WLAN application is designed, fabricated, and measured. From the measured results, the NGD times are -1.08 ns, -1.19 ns, and -1.09 ns at three NGD central frequencies with insertion losses of 16.4 dB, 24.6 dB, and 18.9 dB, respectively. And the measured NGD bandwidths are 12.40% for the lower band, 8.60% for the center band, and 3.59% for the upper band, in which the return losses are greater than 16 dB.

Citation


Yuwei Meng, Zhongbao Wang, Shao-Jun Fang, and Hongmei Liu, "A Tri-Band Negative Group Delay Circuit for Multiband Wireless Applications," Progress In Electromagnetics Research C, Vol. 108, 159-169, 2021.
doi:10.2528/PIERC20112201
http://jpier.org/PIERC/pier.php?paper=20112201

References


    1. Ravelo, B., "Recovery of microwave-digital signal integrity with NGD circuits," Photon. Optoelectron, Vol. 2, No. 1, 8-16, Jan. 2013.

    2. Eudes, T. and B. Ravelo, "Cancellation of delays in the high-rate interconnects with UWB NGD active cells," Appl. Phys. Res., Vol. 3, No. 2, 81-88, Nov. 2011.

    3. Ahn, K., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 9, 2139-2147, Sept. 2009.
    doi:10.1109/TMTT.2009.2027082

    4. Ahn, K., R. Ishikawa, and K. Honjo, "Low noise group delay equalization technique for UWB InGaP/GaAs HBT LNA," IEEE Microwave Wireless Compon. Lett., Vol. 20, No. 7, 405-407, Jul. 2010.
    doi:10.1109/LMWC.2010.2049441

    5. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
    doi:10.1109/ACCESS.2020.2977100

    6. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," Int. J. Electron. Commun., Vol. 123, Art. No. 153297, Aug. 2020.
    doi:10.1016/j.aeue.2020.153297

    7. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative Group-delay circuit," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 5, 1116-1125, May 2010.
    doi:10.1109/TMTT.2010.2045576

    8. He, L., W. Li, J. Hu, and Y. Xu, "A 24-GHz source-degenerated tunable delay shifter with negative group delay compensation," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 8, 687-689, Aug. 2018.
    doi:10.1109/LMWC.2018.2843290

    9. Lucyszyn, S., I. D. Robertson, and A. H. Aghvami, "Negative group delay synthesiser," Electron. Lett., Vol. 29, No. 9, 798-800, Apr. 1993.
    doi:10.1049/el:19930533

    10. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized negative group delay circuit using defected microstrip structure and lumped elements," IEEE MTT-S Int. Microwave Symp. Dig., 1-3, Seattle, WA, USA, Jun. 2013.

    11. Chaudhary, G. and Y. Jeong, "A design of compact wideband negative group delay network using cross coupling," Microw. Opt. Technol. Lett., Vol. 56, No. 11, 2612-2616, Nov. 2014.

    12. Chaudhary, G. and Y. Jeong, "Negative group delay phenomenon analysis in power divider: Coupling matrix approach," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 7, No. 9, 1543-1551, Sept. 2017.
    doi:10.1109/TCPMT.2017.2696972

    13. Ravelo, B., "Negative group-delay phenomenon analysis with distributed parallel interconnect line," IEEE Trans. Electromagn. Compat., Vol. 58, No. 2, 573-580, Apr. 2016.
    doi:10.1109/TEMC.2016.2516899

    14. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 62, No. 2, 234-243, Feb. 2014.
    doi:10.1109/TMTT.2013.2295555

    15. Wu, C. M. and T. Itoh, "Maximally flat negative group delay circuit: A microwave transversal filter approach," IEEE Trans. Microwave Theory Tech., Vol. 6, No. 6, 1330-1342, Jun. 2014.
    doi:10.1109/TMTT.2014.2320220

    16. Wang, Z., Y. Cao, T. Shao, S. Fang, and H. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microwave Wireless Compon. Lett., Vol. 28, No. 4, 290-292, Apr. 2018.
    doi:10.1109/LMWC.2018.2811254

    17. Chaudhary, G. and Y. Jeong, "Arbitrary terminated negative group delay circuit using signal interference concept," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 10, 1-7, Jun. 2020.
    doi:10.1002/mmce.22341

    18. Kim, K. and C. Nguyen, "A SiGe BiCMOS concurrent K/V dual-band 16-way power divider and combiner," IEEE Trans. Circuits Syst. I: Regul. Pap., Vol. 65, No. 6, 1850-1861, Jun. 2018.
    doi:10.1109/TCSI.2017.2766212

    19. Yang, G., S. Zhang, J. Li, Y. Zhang, and G. F. Pedersen, "A multi-band magneto-electric dipole antenna with wide beam-width," IEEE Access, Vol. 8, 68820-68827, Apr. 2020.
    doi:10.1109/ACCESS.2020.2986292

    20. Gomez-Garcıa, R., J. Rosario-De Jesus, and D. Psychogiou, "Multi-band bandpass and bandstop RF filtering couplers with dynamically-controlled bands," IEEE Access, Vol. 6, 32321-32327, Jun. 2018.
    doi:10.1109/ACCESS.2018.2844868

    21. Choi, H., Y. Jeong, J. Lim, S. Eom, and Y. Jung, "A novel design for a dual-band negative group delay circuit," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 1, 19-21, Jan. 2011.
    doi:10.1109/LMWC.2010.2089675

    22. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 8, 521-523, Aug. 2014.
    doi:10.1109/LMWC.2014.2322445

    23. Taher, H. and R. Farrell, "Dual wide-band miniaturized negative group delay circuit using open circuit stubs," Microwave Opt. Technol. Lett., Vol. 60, No. 2, 428-432, Jul. 2018.
    doi:10.1002/mop.30979

    24. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radioengineering, Vol. 27, No. 4, 1070-1076, Dec. 2018.
    doi:10.13164/re.2018.1070

    25. Shao, T., S. Fang, Z. Wang, H. Liu, and S. Fu, "A novel dual-band negative group delay microwave circuit," IEEE Radio Wirel. Symp. (RWS), 1-3, May 2019.

    26. Meng, Y., Z. Wang, S. Fang, T. Shao, H. Liu, and Z. Chen, "Dual-band negative group delay microwave circuit with low signal attenuation and arbitrary frequency ratio," IEEE Access, Vol. 8, 49908-49919, Mar. 2020.
    doi:10.1109/ACCESS.2020.2978545

    27. Xiao, J. and Q. Wang, "Individually controllable tri-band negative group delay circuit using defected microstrip structure," Cross Strait Quad-Regional Radio Sci. Wirel. Technol. Conf., 1-3, Taiyuan, China, 2019.

    28. Ravelo, B., "Resistive and distributed multiband NGD active circuit," URSI Asia-Pac. Radio Sci. Conf. (URSI AP-RASC), 1-4, South Korea, Aug. 2016.

    29. Ravelo, B., "Innovative theory on multiband NGD topology based on feedback-loop power combiner," IEEE Trans. Circuits Syst. II: Express Briefs, Vol. 63, No. 8, 738-742, Aug. 2016.
    doi:10.1109/TCSII.2016.2531101