Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-31

Data-Driven Identification of Governing Partial Differential Equations for the Transmission Line Systems

By Yanming Zhang and Li Jun Jiang
Progress In Electromagnetics Research C, Vol. 108, 23-36, 2021
doi:10.2528/PIERC20102705

Abstract

Discovering governing equations for transmission line is essential for the study on its properties, especially when the nonlinearity is introduced in a transmission line system. In this paper, we propose a novel data-driven approach for deriving the governing partial differential equations based on the spatial-temporal samples of current and voltage in the transmission line system. The proposed method is based on the ridge regression algorithm to determine the active spatial differential terms from the candidate library that includes nonlinear functions, in which the time and spatial derivatives are estimated by using polynomial interpolation. Three examples, including uniform and nonuniform transmission lines and a specific type of nonlinear transmission line for soliton generation, are provided to benchmark the performance of the proposed approach. The results demonstrate that the newly proposed approach can inverse the distributed circuit parameters and also discover the governing partial differential equations in the linear and nonlinear transmission line systems. Our proposed data-driven method for deriving governing equations could provide a practical tool in transmission line modeling.

Citation


Yanming Zhang and Li Jun Jiang, "Data-Driven Identification of Governing Partial Differential Equations for the Transmission Line Systems," Progress In Electromagnetics Research C, Vol. 108, 23-36, 2021.
doi:10.2528/PIERC20102705
http://jpier.org/PIERC/pier.php?paper=20102705

References


    1. Stinehelfer, H. E., "An accurate calculation of uniform microstrip transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 16, No. 7, 439-444, 1968.

    2. Edward, G. C., "Theory and design of transmission line all-pass equalizers," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 1, 28-38, 1969.

    3. Kimionis, J., A. Collado, M. M. Tentzeris, and A. Georgiadis, "Octave and decade printed uwb rectifiers based on nonuniform transmission lines for energy harvesting," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 11, 4326-4334, 2017.

    4. Zhao, Y., S. Hemour, T. Liu, and K. Wu, "Nonuniformly distributed electronic impedance synthesizer," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 11, 4883-4897, 2018.

    5. Ramirez, A. I., A. Semlyen, and R. Iravani, "Modeling nonuniform transmission lines for time domain simulation of electromagnetic transients," IEEE Trans. Power Deliv., Vol. 18, No. 3, 968-974, 2003.

    6. Lu, K., "An efficient method for analysis of arbitrary nonuniform transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 9-14, 1997.

    7. Nikoo, M. S. and S. M.-A. Hashemi, "New soliton solution of a varactor-loaded nonlinear transmission line," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 11, 4084-4092, 2017.

    8. Schleder, G. R., A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, "From DFT to machine learning: Recent approaches to materials science — A review," J. Phys. Materials, Vol. 2, No. 3, 032001, 2019.

    9. Iten, R., T. Metger, H. Wilming, L. Del Rio, and R. Renner, "Discovering physical concepts with neural networks," Phys. Rev. Lett., Vol. 124, No. 1, 010508, 2020.

    10. Sugihara, G., R. May, H. Ye, C.-H. Hsieh, E. Deyle, M. Fogarty, and S. Munch, "Detecting causality in complex ecosystems," Science, Vol. 338, No. 6106, 496-500, 2012.

    11. Ye, H., R. J. Beamish, S. M. Glaser, S. C. H. Grant, C.-H. Hsieh, L. J. Richards, J. T. Schnute, and G. Sugihara, "Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling," Proc. Natl. Acad. Sci. U. S. A., Vol. 112, No. 13, E1569-E1576, 2015.

    12. Kevrekidis, I. G., et al., "Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis," Commun. Math. Sci., Vol. 1, No. 4, 715-762, 2003.

    13. Voss, H. U., P. Kolodner, M. Abel, and J. Kurths, "Amplitude equations from spatiotemporal binary-fluid convection data," Phys. Rev. Lett., Vol. 83, No. 17, 3422, 1999.

    14. Guo, L. and S. A. Billings, "Identification of partial differential equation models for continuous spatio-temporal dynamical systems," IEEE Trans. Circuits Syst. II — Express Briefs, Vol. 53, No. 8, 657-661, 2006.

    15. Guo, L. Z., S. A. Billings, and D. Coca, "Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems," Int. J. Control, Vol. 83, No. 1, 40-48, 2010.

    16. Gonzalez-Garcia, R., R. Rico-Martinez, and I. G. Kevrekidis, "Identification of distributed parameter systems: A neural net based approach," Comput. Chem. Eng., Vol. 22, S965-S968, 1998.

    17. Giannakis, D. and A. J. Majda, "Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability," Proc. Natl. Acad. Sci. U. S. A., Vol. 109, No. 7, 2222-2227, 2012.

    18. Roberts, A. J., "Model emergent dynamics in complex systems," SIAM, Vol. 20, 2014.

    19. Majda, A. J., C. Franzke, and D. Crommelin, "Normal forms for reduced stochastic climate models," Proc. Natl. Acad. Sci. U. S. A., Vol. 106, No. 10, 3649-3653, 2009.

    20. Daniels, B. C. and I. Nemenman, "Automated adaptive inference of phenomenological dynamical models," Nat. Commun., Vol. 6, No. 1, 1-8, 2015.

    21. Bongard, J. and H. Lipson, "Automated reverse engineering of nonlinear dynamical systems," Proc. Natl. Acad. Sci. U. S. A., Vol. 104, No. 24, 9943-9948, 2007.

    22. Schmidt, M. and H. Lipson, "Distilling free-form natural laws from experimental data," Science, Vol. 324, No. 5923, 81-85, 2009.

    23. Raissi, M. and G. E. Karniadakis, "Hidden physics models: Machine learning of nonlinear partial differential equations," J. Comput. Phys., Vol. 357, 125-141, 2018.

    24. Raissi, M., P. Perdikaris, and G. E. Karniadakis, "Physics informed deep learning (part II, Data-driven discovery of nonlinear partial differential equations,", arxiv. arXiv preprint arXiv:1711.10561, 2017.

    25. Long, Z., Y. Lu, and B. Dong, "PDE-Net 2.0: Learning pdes from data with a numericsymbolic hybrid deep network," J. Comput. Phys., Vol. 399, 108925, 2019.

    26. Brunton, S. L., J. L. Proctor, and J. N. Kutz, "Discovering governing equations from data by sparse identification of nonlinear dynamical systems," Proc. Natl. Acad. Sci. U. S. A., Vol. 113, No. 15, 3932-3937, 2016.

    27. Schaeffer, H., "Learning partial differential equations via data discovery and sparse optimization," Proc. R. Soc. A — Math. Phys. Eng. Sci., Vol. 473, No. 2197, 20160446, 2017.

    28. Rudy, S. H., S. L. Brunton, J. L. Proctor, and J. N. Kutz, "Data-driven discovery of partial differential equations," Sci. Adv., Vol. 3, No. 4, e1602614, 2017.

    29. Champion, K., B. Lusch, J. N. Kutz, and S. L. Brunton, "Data-driven discovery of coordinates and governing equations," Proc. Natl. Acad. Sci. U. S. A., Vol. 116, No. 45, 22445-22451, 2019.

    30. Mangan, N. M., S. L. Brunton, J. L. Proctor, and J. N. Kutz, "Inferring biological networks by sparse identification of nonlinear dynamics," IEEE Trans. Mol. Biol. Multi-Scale Commun., Vol. 2, No. 1, 52-63, 2016.

    31. Himanen, L., A. Geurts, A. S. Foster, and P. Rinke, "Data-driven materials science: Status, challenges, and perspectives," Adv. Sci., Vol. 6, No. 21, 1900808, 2019.

    32. Murphy, K. P., Machine Learning: A Probabilistic Perspective, MIT Press, 2012.

    33. Hoerl, A. E. and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, Vol. 12, No. 1, 55-67, 1970.

    34. LeVeque, R. J., "Finite difference methods for ordinary and partial differential equations: Steady-state and time-dependent problems," SIAM, Vol. 98, 2007.

    35. Nathan Kutz, J., Data-driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data, Oxford University Press, 2013.

    36. Elsherbeni, A. Z., et al., The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations, SciTech Pub., 2009.

    37. Knowles, I. and R. J. Renka, "Methods for numerical differentiation of noisy data," Electron. J. Differ. Equ., Vol. 21, 235-246, 2014.

    38. Bruno, O. and D. Hoch, "Numerical differentiation of approximated functions with limited order-ofaccuracy deterioration," SIAM J. Numer. Anal., Vol. 50, No. 3, 1581-1603, 2012.

    39. Nevels, R. and J. Miller, "A simple equation for analysis of nonuniform transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 4, 721-724, 2001.

    40. Watanabe, K., T. Sekine, and Y. Takahashi, "A FDTD method for nonuniform transmission line analysis using Yee’s-lattice and wavelet expansion," 2009 IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, 83-86, 2009.

    41. Sebastiano, G. S., P. Pantano, and P. Tucci, "An electrical model for the Korteweg-de Vries equation," Am. J. Phys., Vol. 52, No. 3, 238-243, 1984.

    42. Ludu, A., Nonlinear Waves and Solitons on Contours and Closed Surfaces, Springer Science & Business Media, 2012.

    43. Darling, J. D. C. and P. W. Smith, "High-power pulsed RF extraction from nonlinear lumped element transmission lines," IEEE Trans. Plasma Sci., Vol. 36, No. 5, 2598-2603, 2008.

    44. Kuek, N. S., A. C. Liew, E. Schamiloglu, and J. O. Rossi, "Circuit modeling of nonlinear lumped element transmission lines including hybrid lines," IEEE Trans. Plasma Sci., Vol. 40, No. 10, 2523-2534, 2012.

    45. Ricketts, D. S., X. Li, M. DePetro, and D. Ham, "A self-sustained electrical soliton oscillator," IEEE MTT-S International Microwave Symposium Digest, 4, IEEE, 2005.

    46. Raissi, M., A. Yazdani, and G. E. Karniadakis, "Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations," Science, Vol. 367, No. 6481, 1026-1030, 2020.