Vol. 107

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-11-30

Improved Enumeration of Scatterers Using Multifrequency Data Fusion in MDL for Microwave Imaging Applications

By Roohallah Fazli, Hadi Owlia, and Majid Pourahmadi
Progress In Electromagnetics Research C, Vol. 107, 65-79, 2021
doi:10.2528/PIERC20091803

Abstract

This paper presents a modified version of minimum description length (MDL) method, referred as multifrequency MDL (FMDL), for scatterers enumeration before using the multiple signal classification (MUSIC) algorithm in microwave imaging applications. The inclusion of data from multiple frequencies should make an attempt to reduce the error in number estimation due to noise and multiple scattering. Data fusion in multiple frequencies is performed based on two schemes called averaging and maximization rules. The solution for MDL criterion which is a minimum for one frequency is not likely to be the solution for other frequencies, so by averaging the MDL criterion over the total frequencies or by maximization of the solution for each frequency, we can achieve the correct source number. Furthermore, a whitening step before applying FMDL method is employed to compensate the aspect limitations of the measured data due to the limited number of antennas. The superiority of the proposed FMDL approach with respect to the other competing methods is confirmed by both the numerical examples and the Institut Fresnel experimental dataset. The results indicate that the FMDL yields more accurate estimate of the targets number specially for the cases of low SNR values and very colsely spaced scatterers.

Citation


Roohallah Fazli, Hadi Owlia, and Majid Pourahmadi, "Improved Enumeration of Scatterers Using Multifrequency Data Fusion in MDL for Microwave Imaging Applications," Progress In Electromagnetics Research C, Vol. 107, 65-79, 2021.
doi:10.2528/PIERC20091803
http://jpier.org/PIERC/pier.php?paper=20091803

References


    1. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
    doi:10.2528/PIERB20012402

    2. Park, W.-K., K.-J. Lee, H.-P. Kim, and S.-H. Son, "Application of MUSIC to microwave imaging for detection of dielectric anomalies," Progress In Electromagnetics Research Symposium — Spring (PIERS), 2908-2912, St. Petersburg, Russia, May 22–25, 2017.

    3. Lee, K. J., S. H. Son, and W. K. Park, "A real-time microwave imaging of unknown anomaly with and without diagonal elements of scattering matrix," Results in Physics, Vol. 17, 103104, 2020.
    doi:10.1016/j.rinp.2020.103104

    4. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3217-3223, 2008.
    doi:10.1109/TAP.2008.929434

    5. Ammari, H., E. Lakovleva, and D. Lesselier, "A MUSIC algorithm for locating small inclusions in a half-space from scattering amplitude at a fixed frequency," SIAM Multiscale Model. Simul., Vol. 3, 597-628, 2005.
    doi:10.1137/040610854

    6. Fazli, R., M. Nakhkash, and A. A. Heidari, "Alleviating the practical restrictions for MUSIC algorithm in actual microwave imaging systems: Experimental assessment," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3108-3118, 2014.
    doi:10.1109/TAP.2014.2313632

    7. Solimene, R., A. DellAversano, and G. Leone, "Interferometric time reversal MUSIC for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.
    doi:10.2528/PIER12062103

    8. Wax, W. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. on Acoustic, Speech, and Signal Processing, Vol. 33, 387-392, 1985.
    doi:10.1109/TASSP.1985.1164557

    9. Xiao, M., P. Wei, and H. M. Tai, "Estimation of the number of sources based on hypothesis testing," Journal of Communications and Networks, Vol. 14, No. 5, 481-486, 2012.
    doi:10.1109/JCN.2012.00004

    10. He, Z., A. Cichocki, S. Xie, and K. Choi, "Detection the number of clusters in n-way probabilistic clustering," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 32, No. 11, 2006-2021, 2010.
    doi:10.1109/TPAMI.2010.15

    11. Liavas, A. P. and P. A. Regalia, "On the behavior of information theoretic criteria for model order selection," IEEE Trans. on Signal Processing, Vol. 49, No. 8, 1689-1695, 2001.
    doi:10.1109/78.934138

    12. Pouramadi, M., M. Nakhkash, and A. A. Tadion, "Application of MDL criterion for microwave imaging by MUSIC algorithm," Progress In Electromagnetics Research B, Vol. 40, 261-278, 2012.
    doi:10.2528/PIERB12031001

    13. Fazli, R. and M. Nakhkash, "An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems," Inverse Prob., Vol. 28, No. 7, 75012-75033, 2012.
    doi:10.1088/0266-5611/28/7/075012

    14. Wax, M. and I. Ziskind, "Detection of the number of coherent signals by the MDL principle," IEEE Trans. on Acoustic, Speech, and Signal Processing, Vol. 37, No. 8, 1190-1196, 1989.
    doi:10.1109/29.31267

    15. Wax, W. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Trans. on Acoustic, Speech, and Signal Processing, Vol. 33, 387-392, 1985.
    doi:10.1109/TASSP.1985.1164557

    16. Ding, Q. and S. Kay, "Inconsistency of the MDL: On the performance of model order selection criteria with increasing signal-to-noise ratio," IEEE Trans. on Signal Processing, Vol. 59, 1959-1969, 2011.
    doi:10.1109/TSP.2011.2108293

    17. Ridder, F., R. Pintelon, J. Schoukens, and D. P. Gillikin, "Modified AIC and MDL model selection criteria for short data records," IEEE Trans. on Instrumentation and Measurement, Vol. 54, 144-150, 2005.
    doi:10.1109/TIM.2004.838132

    18. Kundu, D., "Estimating the number of signals in the presence of white noise," Journal of Statistical Planning and Inference Elsevier, Vol. 90, No. 4, 57-68, 2000.
    doi:10.1016/S0378-3758(00)00102-6

    19. Belkebir, K. and M. Saillard, "Testing inversion algorithms against experimental data," Inverse Probl., Vol. 17, 1565-1571, 2001.
    doi:10.1088/0266-5611/17/6/301

    20. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. Lovetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomedical Eng., Vol. 57, No. 4, 894-904, 2010.
    doi:10.1109/TBME.2009.2036372

    21. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Probl., Vol. 25, 055004-055018, 2009.
    doi:10.1088/0266-5611/25/5/055004

    22. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
    doi:10.1163/156939304774113089

    23. Zheng, H., M. Z. Wang, Z. Q. Zhao, and L. L. Li, "A novel linear EM reconstruction algorithm with phaseless data," Progress In Electromagnetics Research Letters, Vol. 14, 133-146, 2010.
    doi:10.2528/PIERL10031306

    24. Caorsi, S., M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. on Microwave Theory and Tech., Vol. 52, 1217-1228, 2004.
    doi:10.1109/TMTT.2004.825699