Vol. 107
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-14
CPW-Fed Dual-Band Compact Yagi-Type Pattern Diversity Antenna for LTE and WiFi
By
Progress In Electromagnetics Research C, Vol. 107, 183-201, 2021
Abstract
This paper presents a compact generalized T-shaped printed pseudo-monopole antenna (GeT-PPMA) driven dual-band Yagi-type pattern diversity antenna. In contrary to the common practice, here impedance matching at the lower band is attained by increasing the quality factor (Q) through folding a monopole strip. Afterwards, a GeT-PPMA having relatively lower Q than that of the T-PPMA is proposed. Compared to the simple T-PPMA, the GeT-PPMA has 1.5 times more bandwidth (BW) at the lower band. The dual-band GeT-PPMA is 15.11% more compact than the corresponding straight PPMA(S-PPMA). A highly compact dual-band Yagi-type pattern diversity antenna of size 45.5×63 mm2 i.e. 0.35λ0 x 0.48λ0, where λ0 is the free space wavelength at the lowest frequency of operation, is designed by using a novel arrangement of two directors and two common folded reflectors. The compactness owes to the folding of the reflectors. The length of the reflector is optimized for providing good front-to-back-ratio (FBR) in the lower band. The length of the two directors is optimized to improve the FBR at the upper band. Usage of the folded reflector is found to degrade the isolation level in the lower band. Near-field analysis is carried out to investigate the mechanism of mutual coupling. Being guided by the near-field study, a λg/2 isolator, where λg is the guided wavelength at the lower band, is placed in the gap of the folded reflectors, and the mutual coupling is reduced by about 5 dB.
Citation
Naveen Kumar Maurya, and Rajarshi Bhattacharya, "CPW-Fed Dual-Band Compact Yagi-Type Pattern Diversity Antenna for LTE and WiFi ," Progress In Electromagnetics Research C, Vol. 107, 183-201, 2021.
doi:10.2528/PIERC20090905
References

1. Dioum, I., A. Diallo, S. M. Farssi, and C. Luxey, "A novel compact dual-band LTE antenna-system for MIMO operation," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2291-2296, 2014.
doi:10.1109/TAP.2014.2301151

2. Boukarkar, A., X. Q. Lin, Y. Jiang, L. Y. Nie, P. Mei, and Y. Q. Yu, "A miniaturized extremely close-spaced four-element dual-band MIMO antenna system with polarization and pattern diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 134-137, 2018.
doi:10.1109/LAWP.2017.2777839

3. Dietrich, C. B., K. Dietze, J. R. Nealy, and W. L. Stutzman, "Spatial, polarization, and pattern diversity for wireless handheld terminals," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 9, 1271-1281, 2001.
doi:10.1109/8.947018

4. Juan, Y., W. Che, Z. N. Chen, and W. Yang, "A longitudinally compact Yagi-Uda antenna with a parasitic interdigital strip," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2618-2621, 2017.
doi:10.1109/LAWP.2017.2736245

5. Alekseytsev, S. A. and A. P. Gorbachev, "The novel printed dual-band quasi-Yagi antenna with end-fed dipole-like driver," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 4088-4090, 2020.
doi:10.1109/TAP.2019.2950837

6. Bhattacharya, R., R. Garg, and T. K. Bhattacharyya, "A compact Yagi-Uda type pattern diversity antenna driven by CPW-fed pseudomonopole," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 25-32, 2016.
doi:10.1109/TAP.2015.2499756

7. Bhattacharya, R., R. Garg, and T. K. Bhattacharyya, "Design of a PIFA-driven compact Yagi-type pattern diversity antenna for handheld devices," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 255-258, 2016.
doi:10.1109/LAWP.2015.2440260

8. Gu, L., Y.-W. Zhao, Q.-M. Cai, and Z.-P. Zhang, "Wideband quasi-Yagi antenna design and its usage in MIMO/diversity applications," Progress In Electromagnetics Research C, Vol. 71, 33-40, 2017.
doi:10.2528/PIERC16111402

9. Capobianco, A., F. M. Pigozzo, A. Assalini, M. Midrio, S. Boscolo, and F. Sacchetto, "A compact MIMO array of planar end-fire antennas for WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3462-3465, 2011.
doi:10.1109/TAP.2011.2161557

10. Jehangir, S. S. and M. S. Sharawi, "A wideband sectoral quasi-Yagi MIMO antenna system with multibeam elements," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1898-1903, 2019.
doi:10.1109/TAP.2018.2889034

11. Jehangir, S. S. and M. S. Sharawi, "A miniaturized UWB biplanar Yagi-like MIMO antenna system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2320-2323, 2017.
doi:10.1109/LAWP.2017.2716963

12. Jehangir, S. S. and M. S. Sharawi, "A single layer semi-ring slot Yagi-like MIMO antenna system with high front-to-back ratio," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 937-942, 2017.
doi:10.1109/TAP.2016.2633938

13. Jehangir, S. S. and M. S. Sharawi, "A compact single-layer four-port orthogonally polarized Yagi-like MIMO antenna system," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 6372-6377, 2020.
doi:10.1109/TAP.2020.2969810

14. Ding, K., C. Gao, D. Qu, and Q. Yin, "Compact broadband MIMO antenna with parasitic strip," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2349-2353, 2017.
doi:10.1109/LAWP.2017.2718035

15. Maurya, N. K. and R. Bhattacharya, "CPW-fed dual-band pseudo-monopole antenna for LTE/WLAN/WiMAX with its usage in MIMO," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 455-456, Fajardo, 2016.

16. Maurya, N. K., M. Tulsyan, R. Bhattacharya, and A. Kumar, "Design and near field analysis of compact CPW-fed printed pseudo-monopole driven Yagi-type pattern diversity antenna," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, 2017.

17. Ding, C. F., X. Y. Zhang, C. Xue, and C. Sim, "Novel pattern-diversity-based decoupling method and its application to multielement MIMO antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 4976-4985, Oct. 2018.
doi:10.1109/TAP.2018.2851380

18. Obeidat, K. A., B. D. Raines, and R. G. Rojas, "Discussion of series and parallel resonance phenomena in the input impedance of antennas," Radio Science, Vol. 45, No. 06, 1-9, 2010.
doi:10.1029/2010RS004353

19. Chen, Z. N., M. J. Ammann, X. Qing, X. H. Wu, T. S. P. See, and A. Cai, "Planar antennas," IEEE Microwave Magazine, Vol. 7, No. 6, 63-73, 2006.
doi:10.1109/MW-M.2006.250315

20. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., 497-541, John Wiley and Sons, United Kingdom, 2005.

21. Rezaeieh, S. A., M. A. Antoniades, and A. M. Abbosh, "Miniaturized planar Yagi antenna utilizing capacitively coupled folded reflector," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1977-1980, 2017.
doi:10.1109/LAWP.2017.2690973

22. Mikki, S. M. and Y. M. M. Antar, "On cross correlation in antenna arrays with applications to spatial diversity and MIMO systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1798-1810, 2015.
doi:10.1109/TAP.2015.2398113

23. Minz, L. and R. Garg, "Reduction of mutual coupling between closely spaced PIFAs," Electronics Letters, Vol. 46, No. 6, 392-394, 2010.
doi:10.1049/el.2010.3275

24. Grout, V., M. O. Akinsolu, B. Liu, P. I. Lazaridis, K. K. Mistry, and Z. D. Zaharis, "Software solutions for antenna design exploration: A comparison of packages, tools, techniques, and algorithms for various design challenges," IEEE Antennas and Propagation Magazine, Vol. 61, No. 3, 48-59, 2019.
doi:10.1109/MAP.2019.2907887

25. Bhattacharya, R., T. K. Bhattacharyya, and R. Garg, "Position mutated hierarchical particle swarm optimization and its application in synthesis of unequally spaced antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3174-3181, 2012.
doi:10.1109/TAP.2012.2196917

26. Cao, Y., H. Zhang, W. Li, M. Zhou, Y. Zhang, and W. A. Chaovalitwongse, "Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions," IEEE Transactions on Evolutionary Computation, Vol. 23, No. 4, 718-731, 2019.
doi:10.1109/TEVC.2018.2885075