Vol. 106

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-11-02

Modeling Magnetic Minerals Effect on Water Content Estimation in Porous Media

By Tairone Paiva Leao
Progress In Electromagnetics Research C, Vol. 106, 215-228, 2020
doi:10.2528/PIERC20081405

Abstract

Magnetic materials are found naturally in certain terrestrial and extra-terrestrial geological settings and can influence subsurface mapping and fluid transport and content estimations. With the advent of magnetic nanoparticle research there is also the possibility that these will be inputted in the environment on purpose, as research and industrial applications, or inadvertently as contaminants. The presence of magnetic materials is usually not considered in electromagnetic response modeling of saturated or partially saturated porous materials. This is because relative magnetic permeability of most natural materials is close to one, and thus should not affect propagation velocity calculations. The objective of this study was to investigate the effect of magnetic mineral inclusions on the velocity of propagation of an electromagnetic signal on porous materials saturated with water and its influence on volumetric water content estimation. The effective relative dielectric permittivity and magnetic permeability terms were modeled using Maxwell-Garnett, Polder-van Santen, Lichtenecker and Looyenga effective medium approximation equations. Data from three nonmagnetic soils saturated with water to varying degrees was used for preliminary model evaluations. The effect of magnetic minerals was tested by mixing magnetic sand with quartz sand at different proportions and measuring propagation velocity under fully water saturated conditions using Time Domain Reflectometry (TDR). Propagation velocity decreased with increasing magnetic volume fraction, while the effect of increasing magnetic fraction on attenuation factor was not markedly distinct. Water content estimations using models not accounting for magnetic inclusion substantially overestimated volumetric water content in saturated porous media.

Citation


Tairone Paiva Leao, "Modeling Magnetic Minerals Effect on Water Content Estimation in Porous Media," Progress In Electromagnetics Research C, Vol. 106, 215-228, 2020.
doi:10.2528/PIERC20081405
http://jpier.org/PIERC/pier.php?paper=20081405

References


    1. Chen, T., H. Xu, Q. Xe, J. Chen, J. Ji, and H. Lu, "Characteristics and genesis of maghemite in Chinese loess and paleosols: Mechanisms for magnetic susceptibility enhancement in paleosols," Earth Planet. Sci. Lett., Vol. 240, 790-802, 2005.
    doi:10.1016/j.epsl.2005.09.026

    2. Fialova, H., G. Maier, E. Petrovsky, A. Kapieka, T. Boyko, and R. Schloger, "Magnetic properties of soils from sites with different geological and environmental settings," J. Appl. Geophys., Vol. 59, 273-283, 2005.
    doi:10.1016/j.jappgeo.2005.10.006

    3. Vatta, L. L., R. D. Sanderson, and K. Koch, "Magnetic nanoparticles: Properties and potential applications," Pure Appl. Chem., Vol. 78, 1793-1801, 2006.
    doi:10.1351/pac200678091793

    4. Mohammed, L., H. G. Gomaa, D. Ragab, and J. Zhu, "Magnetic nanoparticles for environmental and biomedical applications: A review," Particuology, Vol. 30, 1-14, 2017.
    doi:10.1016/j.partic.2016.06.001

    5. Akbarzadeh, A., M. Samiei, and S. Davaran, "Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine," Nanoscale Res. Lett., Vol. 7, 144, 2012.
    doi:10.1186/1556-276X-7-144

    6. Tang, S. C. N. and I. M. C. Lo, "Magnetic nanoparticles: Essential factors for sustainable environmental applications," Water Res., Vol. 47, 2613-2632, 2013.
    doi:10.1016/j.watres.2013.02.039

    7. Chudanicova, M. and S. M. Hutchinson, "Magnetic signature of overbank sediment in industrial impacted floodplains identified by data mining methods," Geophys. J. Int., Vol. 207, 1106-1121, 2016.
    doi:10.1093/gji/ggw321

    8. Wang, G., F. Ren, J. Chen, Y. Liu, F. Ye, F. Oldfield, W. Zhang, and X. Zhang, "Magnetic evidence of anthropogenic dust deposition in urban soils of Shangai, China," Chem. Erde, Vol. 77, 421-428, 2017.
    doi:10.1016/j.chemer.2017.07.007

    9. Picardi, G., et al., "Radar sounding of the subsurface of mars," Science, Vol. 310, 1925-1928, 2008.
    doi:10.1126/science.1122165

    10. Pettinelli, E., G. Vannaroni, A. Cereti, A. R. Pisani, F. Paolucci, D. Del Vento, D. Dolfi, S. Riccioli, and F. Bella, "Laboratory investigations into electromagnetic properties of magnetite/silica mixtures as Martian soil simulants," Journal of Geophysical Research, Vol. 110, E04013, 2005.
    doi:10.1029/2004JE002375

    11. Von Hippel, A., Dielectric and Waves, 284, Wiley, Hoboken, 1954.

    12. Griffiths, D. J., Introduction to Electrodynamics, 4th Ed., 604, Pearson Education Inc., 2013.

    13. Robinson, D. A., S. B. Jones, J. M. Wraith, D. Or, and S. P. Friedman, "Review of advances in dielectric and electrical conductivity measurements using time domain reflectometry," Vadose Zone J., Vol. 2, 444-475, 2003.
    doi:10.2136/vzj2003.4440

    14. Huisman, J. A., S. S. Hubbard, J. D. Redman, and A. P. Annan, "Measuring soil water content with ground penetrating radar: A review," Vadose Zone J., Vol. 2, 476-491, 2003.
    doi:10.2136/vzj2003.4760

    15. Mattei, E., A. De Santis, A. D. Di Matteo, E. Pettinelli, and G. Vannaroni, "Electromagnetic parameters of dielectric and magnetic mixtures evaluated by time-domain reflectometry," IEEE Geosci. Remote Sens. Lett., Vol. 5, 730-734, 2008.
    doi:10.1109/LGRS.2008.2004504

    16. Dalton, F. N. and M. Th. van Genuchten, "The time-domain reflectometry method for measuring soil water content and salinity," Geoderma, Vol. 38, 237-250, 1986.
    doi:10.1016/0016-7061(86)90018-2

    17. Mattei, E., A. De Santis, A. D. Di Matteo, E. Pettinelli, and G. Vannaroni, "Time domain reflectometry of glass beads/magnetite mixtures: A time domain study," Appl. Phys. Lett., Vol. 86, 224102, 2005.
    doi:10.1063/1.1935029

    18. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960.

    19. Polder, D. and J. H. Van Santem, "The effective permeability of mixtures of solids," Physica XII, Vol. 5, 257-271, 1946.
    doi:10.1016/S0031-8914(46)80066-1

    20. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geosci. Rem. Sens., Vol. 26, 420-429, 1988.
    doi:10.1109/36.3045

    21. Birchak, J. P., G. G. Gardner, J. E. Hipp, and J. M. Victor, "High dielectric constant microwave probes for sensing soil moisture," Proc. IEEE, Vol. 62, 93-98, 1974.
    doi:10.1109/PROC.1974.9388

    22. Zakri, T., J. P. Laurent, and M. Vauclin, "Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory," J. Physics D, Vol. 31, 1589-1594, 1998.
    doi:10.1088/0022-3727/31/13/013

    23. Looyenga, H., "Dielectric constant of homogenous mixtures," Mol. Phys., Vol. 9, 501-511, 1965.
    doi:10.1080/00268976500100671

    24. Dube, D. C., "Study of Landau-Lifshitz-Looyenga’s formula for dielectric correlation between powder and bulk," J. Phys. D: Appl. Phys., Vol. 3, 1648-1652, 1970.
    doi:10.1088/0022-3727/3/11/313

    25. Leao, T. P., B. D. C. Freire, V. B. Bufon, and F. F. H. Aragon, "Using Time Domain Reflectometry to estimate water content of three soil orders under savanna in Brazil," Geoderma Regional., Vol. 21, e00280, 2020.
    doi:10.1016/j.geodrs.2020.e00280

    26. Correa, I. C. S. and A. R. D. Elias, "Minerais pesados dos sedimentos do fundo da enseada de Caraguatatuba, Sao Paulo, Brasil," Pesquisas em Geociˆencias, Vol. 28, 37-47, 2001.
    doi:10.22456/1807-9806.20166

    27. Noborio, K., "Measurement of soil water content and electrical conductivity by time domain reflectometry: A review," Comput. Electr. Agricult., Vol. 31, 213-237, 2001.
    doi:10.1016/S0168-1699(00)00184-8

    28. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resour. Res., Vol. 16, 574-582, 1980.
    doi:10.1029/WR016i003p00574

    29. Topp, G. C. and W. D. Reynolds, "Time domain reflectometry: A seminal technique for measuring mass and energy in soil," Soil Till. Res., Vol. 47, 125-132, 1998.
    doi:10.1016/S0167-1987(98)00083-X

    30. Robinson, D. A. and S. P. Friedman, "A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials," J. Geophys. Res., Vol. 108, 2076, 2003.

    31. Robinson, P., R. J. Harrison, S. A. McEnroe, and R. B. Hargraves, "Lamellar magnetism in the hematite-ilmenite series as an explanation for strong remanent magnetization," Nature, Vol. 418, 517-520, 2002.
    doi:10.1038/nature00942

    32. Ursula, S., L. Dominique, M. Burchard, and R. Engelmann, "The titanomagnetite-ilmenite equilibrium: New experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks," J. Petrol., Vol. 49, 1161-1185, 2008.
    doi:10.1093/petrology/egn021

    33. Van Dam, R. L., J. M. H. Hendrickx, N. J. Cassidy, R. E. North, M. Dogan, and B. Borchers, "Effects of magnetite on high-frequency ground penetrating radar," Geophysics, Vol. 78, H1-H11, 2013.
    doi:10.1190/geo2012-0266.1

    34. Iwauchi, K., Y. Kital, and N. Koizumil, "Magnetic and dielectric properties of Fe3O4," J. Phys. Soc. Jpn., Vol. 49, 1328-1335, 1980.
    doi:10.1143/JPSJ.49.1328

    35. Hotta, M., M. Hayashi, A. Nishikata, and K. Nagata, "Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0.2 and 13.5GHz," ISIJ International, Vol. 49, 1443-1448, 2009.
    doi:10.2355/isijinternational.49.1443

    36. Robinson, D. A., J. P. Bell, and C. H. Batchelor, "Influence of iron minerals on the determination of soil water content using dielectric techniques," J. Hydrol., Vol. 161, 169-180, 1994.
    doi:10.1016/0022-1694(94)90127-9

    37. Cassidy, N. J., "Frequency-dependent attenuation and velocity characteristics of nano-to-micro scale, lossy, magnetite-rich materials," Near Surf. Geophys., Vol. 6, 341-354, 2008.
    doi:10.3997/1873-0604.2008023

    38. Fannin, P. C., C. N. Marin, I. Malaescu, and N. Stefu, "Microwave dielectric properties of magnetite colloidal particles in magnetic fluids," J. Phys.: Condens. Matter, Vol. 19, 036104, 2007.
    doi:10.1088/0953-8984/19/3/036104

    39. Schrettle, F., S. Krohns, P. Lunkenheimer, V. A. M. Brabers, and A. Loidl, "Relaxor ferroelectricity and the freezing of short-range polar order in magnetite," Phys. Rev. B, Vol. 83, 195109, 2011.
    doi:10.1103/PhysRevB.83.195109

    40. Angst, M., S. Adiga, S. Gorfman, M. Ziolkowski, J. Strempfer, C. Grams, M. Pietsch, and J. Hemberger, "Intrinsic ferroelectricity in charge-ordered magnetite," Crystals, Vol. 9, No. 11, 546, 2019.
    doi:10.3390/cryst9110546