Vol. 106

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Modeling Magnetic Minerals Effect on Water Content Estimation in Porous Media

By Tairone Paiva Leao
Progress In Electromagnetics Research C, Vol. 106, 215-228, 2020


Magnetic materials are found naturally in certain terrestrial and extra-terrestrial geological settings and can influence subsurface mapping and fluid transport and content estimations. With the advent of magnetic nanoparticle research there is also the possibility that these will be inputted in the environment on purpose, as research and industrial applications, or inadvertently as contaminants. The presence of magnetic materials is usually not considered in electromagnetic response modeling of saturated or partially saturated porous materials. This is because relative magnetic permeability of most natural materials is close to one, and thus should not affect propagation velocity calculations. The objective of this study was to investigate the effect of magnetic mineral inclusions on the velocity of propagation of an electromagnetic signal on porous materials saturated with water and its influence on volumetric water content estimation. The effective relative dielectric permittivity and magnetic permeability terms were modeled using Maxwell-Garnett, Polder-van Santen, Lichtenecker and Looyenga effective medium approximation equations. Data from three nonmagnetic soils saturated with water to varying degrees was used for preliminary model evaluations. The effect of magnetic minerals was tested by mixing magnetic sand with quartz sand at different proportions and measuring propagation velocity under fully water saturated conditions using Time Domain Reflectometry (TDR). Propagation velocity decreased with increasing magnetic volume fraction, while the effect of increasing magnetic fraction on attenuation factor was not markedly distinct. Water content estimations using models not accounting for magnetic inclusion substantially overestimated volumetric water content in saturated porous media.


Tairone Paiva Leao, "Modeling Magnetic Minerals Effect on Water Content Estimation in Porous Media," Progress In Electromagnetics Research C, Vol. 106, 215-228, 2020.


    1. Chen, T., H. Xu, Q. Xe, J. Chen, J. Ji, and H. Lu, "Characteristics and genesis of maghemite in Chinese loess and paleosols: Mechanisms for magnetic susceptibility enhancement in paleosols," Earth Planet. Sci. Lett., Vol. 240, 790-802, 2005.

    2. Fialova, H., G. Maier, E. Petrovsky, A. Kapieka, T. Boyko, and R. Schloger, "Magnetic properties of soils from sites with different geological and environmental settings," J. Appl. Geophys., Vol. 59, 273-283, 2005.

    3. Vatta, L. L., R. D. Sanderson, and K. Koch, "Magnetic nanoparticles: Properties and potential applications," Pure Appl. Chem., Vol. 78, 1793-1801, 2006.

    4. Mohammed, L., H. G. Gomaa, D. Ragab, and J. Zhu, "Magnetic nanoparticles for environmental and biomedical applications: A review," Particuology, Vol. 30, 1-14, 2017.

    5. Akbarzadeh, A., M. Samiei, and S. Davaran, "Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine," Nanoscale Res. Lett., Vol. 7, 144, 2012.

    6. Tang, S. C. N. and I. M. C. Lo, "Magnetic nanoparticles: Essential factors for sustainable environmental applications," Water Res., Vol. 47, 2613-2632, 2013.

    7. Chudanicova, M. and S. M. Hutchinson, "Magnetic signature of overbank sediment in industrial impacted floodplains identified by data mining methods," Geophys. J. Int., Vol. 207, 1106-1121, 2016.

    8. Wang, G., F. Ren, J. Chen, Y. Liu, F. Ye, F. Oldfield, W. Zhang, and X. Zhang, "Magnetic evidence of anthropogenic dust deposition in urban soils of Shangai, China," Chem. Erde, Vol. 77, 421-428, 2017.

    9. Picardi, G., et al., "Radar sounding of the subsurface of mars," Science, Vol. 310, 1925-1928, 2008.

    10. Pettinelli, E., G. Vannaroni, A. Cereti, A. R. Pisani, F. Paolucci, D. Del Vento, D. Dolfi, S. Riccioli, and F. Bella, "Laboratory investigations into electromagnetic properties of magnetite/silica mixtures as Martian soil simulants," Journal of Geophysical Research, Vol. 110, E04013, 2005.

    11. Von Hippel, A., Dielectric and Waves, 284, Wiley, Hoboken, 1954.

    12. Griffiths, D. J., Introduction to Electrodynamics, 4th Ed., 604, Pearson Education Inc., 2013.

    13. Robinson, D. A., S. B. Jones, J. M. Wraith, D. Or, and S. P. Friedman, "Review of advances in dielectric and electrical conductivity measurements using time domain reflectometry," Vadose Zone J., Vol. 2, 444-475, 2003.

    14. Huisman, J. A., S. S. Hubbard, J. D. Redman, and A. P. Annan, "Measuring soil water content with ground penetrating radar: A review," Vadose Zone J., Vol. 2, 476-491, 2003.

    15. Mattei, E., A. De Santis, A. D. Di Matteo, E. Pettinelli, and G. Vannaroni, "Electromagnetic parameters of dielectric and magnetic mixtures evaluated by time-domain reflectometry," IEEE Geosci. Remote Sens. Lett., Vol. 5, 730-734, 2008.

    16. Dalton, F. N. and M. Th. van Genuchten, "The time-domain reflectometry method for measuring soil water content and salinity," Geoderma, Vol. 38, 237-250, 1986.

    17. Mattei, E., A. De Santis, A. D. Di Matteo, E. Pettinelli, and G. Vannaroni, "Time domain reflectometry of glass beads/magnetite mixtures: A time domain study," Appl. Phys. Lett., Vol. 86, 224102, 2005.

    18. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960.

    19. Polder, D. and J. H. Van Santem, "The effective permeability of mixtures of solids," Physica XII, Vol. 5, 257-271, 1946.

    20. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Trans. Geosci. Rem. Sens., Vol. 26, 420-429, 1988.

    21. Birchak, J. P., G. G. Gardner, J. E. Hipp, and J. M. Victor, "High dielectric constant microwave probes for sensing soil moisture," Proc. IEEE, Vol. 62, 93-98, 1974.

    22. Zakri, T., J. P. Laurent, and M. Vauclin, "Theoretical evidence for ‘Lichtenecker’s mixture formulae’ based on the effective medium theory," J. Physics D, Vol. 31, 1589-1594, 1998.

    23. Looyenga, H., "Dielectric constant of homogenous mixtures," Mol. Phys., Vol. 9, 501-511, 1965.

    24. Dube, D. C., "Study of Landau-Lifshitz-Looyenga’s formula for dielectric correlation between powder and bulk," J. Phys. D: Appl. Phys., Vol. 3, 1648-1652, 1970.

    25. Leao, T. P., B. D. C. Freire, V. B. Bufon, and F. F. H. Aragon, "Using Time Domain Reflectometry to estimate water content of three soil orders under savanna in Brazil," Geoderma Regional., Vol. 21, e00280, 2020.

    26. Correa, I. C. S. and A. R. D. Elias, "Minerais pesados dos sedimentos do fundo da enseada de Caraguatatuba, Sao Paulo, Brasil," Pesquisas em Geociˆencias, Vol. 28, 37-47, 2001.

    27. Noborio, K., "Measurement of soil water content and electrical conductivity by time domain reflectometry: A review," Comput. Electr. Agricult., Vol. 31, 213-237, 2001.

    28. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resour. Res., Vol. 16, 574-582, 1980.

    29. Topp, G. C. and W. D. Reynolds, "Time domain reflectometry: A seminal technique for measuring mass and energy in soil," Soil Till. Res., Vol. 47, 125-132, 1998.

    30. Robinson, D. A. and S. P. Friedman, "A method for measuring the solid particle permittivity or electrical conductivity of rocks, sediments, and granular materials," J. Geophys. Res., Vol. 108, 2076, 2003.

    31. Robinson, P., R. J. Harrison, S. A. McEnroe, and R. B. Hargraves, "Lamellar magnetism in the hematite-ilmenite series as an explanation for strong remanent magnetization," Nature, Vol. 418, 517-520, 2002.

    32. Ursula, S., L. Dominique, M. Burchard, and R. Engelmann, "The titanomagnetite-ilmenite equilibrium: New experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks," J. Petrol., Vol. 49, 1161-1185, 2008.

    33. Van Dam, R. L., J. M. H. Hendrickx, N. J. Cassidy, R. E. North, M. Dogan, and B. Borchers, "Effects of magnetite on high-frequency ground penetrating radar," Geophysics, Vol. 78, H1-H11, 2013.

    34. Iwauchi, K., Y. Kital, and N. Koizumil, "Magnetic and dielectric properties of Fe3O4," J. Phys. Soc. Jpn., Vol. 49, 1328-1335, 1980.

    35. Hotta, M., M. Hayashi, A. Nishikata, and K. Nagata, "Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0.2 and 13.5GHz," ISIJ International, Vol. 49, 1443-1448, 2009.

    36. Robinson, D. A., J. P. Bell, and C. H. Batchelor, "Influence of iron minerals on the determination of soil water content using dielectric techniques," J. Hydrol., Vol. 161, 169-180, 1994.

    37. Cassidy, N. J., "Frequency-dependent attenuation and velocity characteristics of nano-to-micro scale, lossy, magnetite-rich materials," Near Surf. Geophys., Vol. 6, 341-354, 2008.

    38. Fannin, P. C., C. N. Marin, I. Malaescu, and N. Stefu, "Microwave dielectric properties of magnetite colloidal particles in magnetic fluids," J. Phys.: Condens. Matter, Vol. 19, 036104, 2007.

    39. Schrettle, F., S. Krohns, P. Lunkenheimer, V. A. M. Brabers, and A. Loidl, "Relaxor ferroelectricity and the freezing of short-range polar order in magnetite," Phys. Rev. B, Vol. 83, 195109, 2011.

    40. Angst, M., S. Adiga, S. Gorfman, M. Ziolkowski, J. Strempfer, C. Grams, M. Pietsch, and J. Hemberger, "Intrinsic ferroelectricity in charge-ordered magnetite," Crystals, Vol. 9, No. 11, 546, 2019.