Vol. 107

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-02

Enhanced Anisotropic Scattering Targets Imaging in Wide-Angle SAR

By Xin Wang, Guiqing Chang, and Chenchen Chi
Progress In Electromagnetics Research C, Vol. 107, 127-141, 2021
doi:10.2528/PIERC20072705

Abstract

In wide-angle synthetic aperture radar (SAR), the scattering behavior of many illuminated objects might vary with the observation angle, which results in the degradation of the resolution and interpretability of the reconstructed imagery. To solve this problem, a sparse-based methodology is proposed in this paper to implement the separation of the anisotropic scattering target data and imaging processing simultaneously. The distinct reflection characteristics of the illuminated targets are employed to formulate a composite projection operator. Then, the sparse constraint is utilized to suppress cross-projection energy. Finally, the imagery of the anisotropic scattering targets could be derived with improved focal quality and interpretability. Numerical simulations could verify the validity of the proposed methodology.

Citation


Xin Wang, Guiqing Chang, and Chenchen Chi, "Enhanced Anisotropic Scattering Targets Imaging in Wide-Angle SAR," Progress In Electromagnetics Research C, Vol. 107, 127-141, 2021.
doi:10.2528/PIERC20072705
http://jpier.org/PIERC/pier.php?paper=20072705

References


    1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, Wiley, New York, 1991.

    2. Casteel, Jr., C. H., et al., "A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment," Proc. SPIE, Algorithms for Synthetic Aperture Radar Imagery XIV, Vol. 6568, 65680D-1-65680D-7, 2007.
    doi:10.1117/12.741109

    3. Damini, A., et al., "A video SAR mode for the X-band wideband experimental airborne radar," Proc. SPIE, Vol. 7699, 76990E, 2010.
    doi:10.1117/12.855376

    4. Franceschetti, G., et al., "WASAR: A wide-angle SAR processor," IET Proceedings F Radar & Signal Processing, Vol. 139, No. 2, 107-114, 2002.
    doi:10.1049/ip-f-2.1992.0014

    5. Dungan, K. E., et al., "Wide angle SAR data for target discrimination research," Proc. SPIE, Vol. 8394, 83940M, 2012.
    doi:10.1117/12.925077

    6. Kim, A. J., J. W. Fisher, and A. SWillsky, "Detection and analysis of anisotropic scattering in SAR data," Multidimensional Systems and Signal Processing, 49-82, 2003.
    doi:10.1023/A:1022268908156

    7. Ash, J., et al., "Wide-angle synthetic aperture radar imaging: Models and algorithms for anisotropic scattering," IEEE Signal Processing Magazine, Vol. 31, No. 4, 16-26, 2014.
    doi:10.1109/MSP.2014.2311828

    8. Trintinalia, L. C., R. Bhalla, and H. Ling, "Scattering center parameterization of wide-angle backscattered data using adaptive Gaussian representation," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1664-1668, 1997.
    doi:10.1109/8.650078

    9. Ferro-Famil, L., et al., "Scene characterization using subaperture polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 10, 2264-2276, 2003.
    doi:10.1109/TGRS.2003.817188

    10. Cetin, M. and R. L. Moses, "SAR imaging from partial-aperture data with frequency-band omissions," Defense & Security International Society for Optics and Photonics, 2005.

    11. Ash, J., et al., "Wide-angle synthetic aperture radar imaging: Models and algorithms for anisotropic scattering," IEEE Signal Processing Magazine, Vol. 31, No. 4, 16-26, 2014.
    doi:10.1109/MSP.2014.2311828

    12. Damini, A., et al., "A video SAR modefor the X-band wideband experimental airborne radar," Proc. SPIE, Vol. 7699, 76990E, 2010.
    doi:10.1117/12.855376

    13. Zuo, F., et al., "Improved method of video synthetic aperture radar imaging algorithm," IEEE Geoscience & Remote Sensing Letters, Vol. 16, No. 6, 1-5, 2019.
    doi:10.1109/LGRS.2018.2886750

    14. Mosesa, R. L., L. C. Pottera, and M. Cetinb, "Wide angle SAR imaging," Proc. SPIE 5427, Algorithms for Synthetic Aperture Radar Imagery XI, 5427, 2004.

    15. Iervolin, P., R. Guida, and P. Whittaker, "A new GLRT-based ship detection technique in SAR images," IEEE IGARSS, 2015.

    16. Cetin, M. and W. C. Karl, "Feature-enhanced synthetic aperture radar formation based on nonquadratic regularization," IEEE Transactions on Image Processing, Vol. 10, No. 4, 623-631, 2001.
    doi:10.1109/83.913596

    17. Ertin, E., L. C. Potter, and R. L. Moses, "Enhanced imaging over complete circular apertures," Proc. Asilomar Conf. Signals, Syst. Comput., 1580-1584, 2006.

    18. Wu, Y., D. C. Munson, and Jr., "Wide angle ISAR passive imaging using smoothed pseudo Wigner-Ville distribution," Proc. 2001 IEEE Radar Conference, 363-368, 2001.

    19. De Graaf, S. R., "SAR imaging via modern 2-D spectral estimation methods," IEEE Transactions on Image Processing, Vol. 7, No. 5, 729-761, 1998.
    doi:10.1109/83.668029

    20. Ziniel, J. and P. Schniter, "Dynamic compressive sensing of time-varying signals via approximate message passing," IEEE Transactions on Signal Processing, Vol. 61, No. 21, 5270-5284, 2013.
    doi:10.1109/TSP.2013.2273196

    21. Jiang, C. L., B. C. Zhang, and Z. D. Wang, "Group-sparse complex approximated message passing algorithm for wide angle synthetic aperture radar imaging," Journal of Electronics & Information Technology, Vol. 37, No. 8, 1793-1800, 2015.

    22. Varshneya, K. R., et al., "Joint image formation and anisotropy characterization inwide-angle SAR," Proc. of SPIE Algorithms for Synthetic Aperture Radar Imagery XIII, 6237, 2006.

    23. Gerry, M. J., et al., "A parametric model for synthetic aperture radar measurements," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 7, 1179-1188, 1999.
    doi:10.1109/8.785750

    24. Koets, M. A. and R. L. Moses, "Feature extraction using attributed scattering center models on SAR imagery," SPIE Algorithms for Synthetic Aperture Radar Imagery VI, 1999.

    25. Candes, E. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, 2008.
    doi:10.1109/MSP.2007.914731

    26. Chartrand, R. and V. Staneva, "Restricted isometry properties and nonconvex compressive sensing," Inverse Problems, Vol. 24, No. 3, 1-14, 2008.
    doi:10.1088/0266-5611/24/3/035020

    27. Cetin, M., et al., "Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing," IEEE Signal Processing Magazine, Vol. 31, No. 4, 27-40, 2014.
    doi:10.1109/MSP.2014.2312834

    28. Gerry, M. J. and L. C. Potter, "A parametric model for synthetic aperture radar measurements," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 7, 1179-1188, 1999.
    doi:10.1109/8.785750

    29. Potter, L. C. and D. M. Chiang, "A GTD-based parametric model for radar scattering," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 10, 1058-1067, 1995.
    doi:10.1109/8.467641

    30. He, Y., et al., "A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6192-6205, 2014.
    doi:10.1109/TAP.2014.2360700