Vol. 106

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-11-10

A Design Methodology for the Implementation of Planar Spiral Antennas with an Integrated Corporate Feed

By Paul Tcheg and David Pouhè
Progress In Electromagnetics Research C, Vol. 106, 239-253, 2020
doi:10.2528/PIERC20071304

Abstract

A methodology for designing planar spiral antennas with a feeding network embedded within a dielectric is presented. To avoid a purely academic work which may not be manufactured with available standard technologies, the approach takes into account manufacturing process requirements by choice of used materials in the simulation. General design rules are provided. They encompass amongst others, selection criteria for dielectric material, aspects to consider when sketching the radiating element design, as well as those for the implementation of the feeding network. A rule of thumb, which may be helpful in the determination of the antenna supporting substrate's height, has been found. The appeal of the method resides in the fact that it eases up the design process and helps to minimize errors, saving time and money. The approach also enables the design of compact and small-size spiral antenna as antenna-in-package (AiP), and provides the opportunity to assemble the antenna with other RF components/systems on the same layer stack or on the same integration platform.

Citation


Paul Tcheg and David Pouhè, "A Design Methodology for the Implementation of Planar Spiral Antennas with an Integrated Corporate Feed," Progress In Electromagnetics Research C, Vol. 106, 239-253, 2020.
doi:10.2528/PIERC20071304
http://jpier.org/PIERC/pier.php?paper=20071304

References


    1. Chatterjee, J. S., "Radiation Field of a conical helix," Journal of Applied Physics, Vol. 24, No. 5, 550-559, May 1953.
    doi:10.1063/1.1721328

    2. Turner, E. M., Spiral slot antenna, U.S. Patent 2,863,145, Dec. 1958.

    3. Dyson, J. D., "The non-planar equiangular spiral antenna," Proc. USAF Antenna Research and Development Program. Symp., 1958.

    4. Dyson, J. D., "The equiangular spiral antenna," IRE Trans. Antennas Propag., Vol. 7, 181-187, Apr. 1959.
    doi:10.1109/TAP.1959.1144653

    5. Dyson, J. D., "The unidirectional equiangular spiral antenna," IRE Trans. Antennas Propag., Vol. 7, No. 4, 329-334, Oct. 1959.
    doi:10.1109/TAP.1959.1144707

    6. Bawer, R. and J. J. Wolfe, "The spiral antenna," I.R.E. International Convention Record, 84-95, Mar. 1960.
    doi:10.1109/IRECON.1960.1150893

    7. Curtis, W. L., "Spiral antennas," IRE Trans. Antennas Propag., Vol. 8, No. 3, 298-306, May 1960.
    doi:10.1109/TAP.1960.1144850

    8. Bawer, R. and J. J. Wolfe, "A printed circuit balun for use with spiral antennas," IRE Trans. on Microwave Theory and Techniques, Vol. 8, No. 3, 319-325, May 1960.
    doi:10.1109/TMTT.1960.1125239

    9. Cheo, B. R. S., V. H. Rumsey, and W. J. Welch, "A solution to the frequency-independent antenna problem," IRE Trans. Antennas Propag., Vol. 7, 527-534, 1961.
    doi:10.1109/TAP.1961.1145057

    10. Deschamps, G. A. and J. D. Dyson, "The logarithmic spiral in a single-aperture multimode antenna system," IEEE Trans. Antennas Propag., Vol. 19, No. 1, 90-96, Jan. 1971.
    doi:10.1109/TAP.1971.1139866

    11. Nakano, H., K. Nogami, S. Arai, H. Mimaki, and J. Yamauchi, "A spiral antenna backed by a conducting plane reflector," IEEE Trans. Antennas Propag., Vol. 34, No. 6, 791-796, Jun. 1986.
    doi:10.1109/TAP.1986.1143893

    12. DuHamel, R. H. and J. P. Scherer, Frequency independent antennas, 3rd Ed., 14-1–14-68, Antenna Engineering Handbook, McGraw-Hill, 1993.

    13. Liu, B., Vertically interconned wide-bandwidth monolithic planar antennas for 3D-IC, Dissertation, University of Cincinnati, 2002.

    14. Lee, K. F. and W. Chen, Advances in Microstrip and Printed Antennas, John Wiley & Sons, New York, 1997.

    15. https:\\www.isola-group.com\wp-content\uploads\data-sheets\Astra sup sup MT77 Dk Df - Tables.pdf,.

    16. http:\\www.contag.de\uploads\pi ti\technische ausfuehrung.pdf,.

    17. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., John Wiley & Sons, New York, 1998.

    18. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, New York, 2012.

    19. Maloratsky, L. G., Passive RF & Microwave Integrated Circuits, Elsevier Inc., 2004.

    20. Balanis, C. A., Antenna Theory. Analysis and Design, 3rd Ed., 513-514, John Wiley & Sons, New York, 2005.

    21. Henderson, A. and J. R. James, "Design of microstrip antenna feeds. Part 1: Estimation of radiation loss and design implications," IEE Proc. H --- Microwaves, Optics and Antennas, Vol. 128, No. 1, Feb. 1981.
    doi:10.1049/ip-h-1.1981.0004

    22. Hall, P. S. and J. R. James, "Design of microstrip antenna feeds. Part 2: Design and performance limitations of triplate corporate feeds," IEE Proceedings H --- Microwaves, Optics and Antennas, Vol. 128, No. 1, Feb. 1981.
    doi:10.1049/ip-h-1.1981.0005

    23. Horng, T. S. and N. G. Alexopoulos, "Corporate feed design for microstrip arrays," IEEE Trans. Antennas Propag., Vol. 41, No. 12, Dec. 1993.

    24. Wentworth, S. M. and S. M. Rao, "Analysis of equiangular spiral antennas," Int. Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 6, No. 2, 92-99, 1996.
    doi:10.1002/(SICI)1522-6301(199603)6:2<92::AID-MMCE2>3.0.CO;2-L

    25. Sirbu, B., T. Tekin, and D. Pouhe, "Design and simulation of an equiangular spiral antenna for extremely high-frequencies," Proc. of the 8th European Conference on Antennas and Propagation, 2014.

    26. Holzman, E., Essentials of RF and Microwave Grounding, Artech House, Inc., 2006.