Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-07-23

A Compact Quad Port Band-Notched MIMO Antenna for Wi-MAX Applications with Low Mutual Coupling

By Bhakti Vinod Nikam and Maruti R. Jadhav
Progress In Electromagnetics Research C, Vol. 104, 53-67, 2020
doi:10.2528/PIERC20060602

Abstract

High data rates and good channel bandwidth are some of the requirements of today's wireless communication systems. The wireless communication systems are now rapidly adopting a Multiple Input Multiple Output i.e MIMO technique due to its advantages such as the data rates and bandwidth. The main focus of this paper is to design a highly isolated MIMO antenna with Wi-MAX bandwidth. This MIMO antenna design is prepared with four pentagonal slotted monopole antennas with a parasitic element structure operating in the band of 5.1 to 5.8 GHz which offers isolation more than 28 dB. Rectangular slots are used for each radiating patch for a band-notched frequency at 5.5 GHz frequency relative to the Wi-MAX frequency band. To improve the isolation of the antenna, on the surface of the dielectric substrate, a single plus-shaped parasitic structure is uniformly inserted between the antenna elements. The result obtained from the fabricated antenna is at an acceptable range with that of the simulated for the Wi-MAX band applications.

Citation


Bhakti Vinod Nikam and Maruti R. Jadhav, "A Compact Quad Port Band-Notched MIMO Antenna for Wi-MAX Applications with Low Mutual Coupling," Progress In Electromagnetics Research C, Vol. 104, 53-67, 2020.
doi:10.2528/PIERC20060602
http://jpier.org/PIERC/pier.php?paper=20060602

References


    1. Cheng, C.-M., et al., "Four antennas on smart watch for GPS/UMTS/ WLAN MIMO application," IEEE Intl. Conf. on Comp. Electromagn. (ICCEM), Vol. 2017, 346-348, IEEE, Kumamoto, Japan, 2017.

    2. Li, Q., et al., "MIMO techniques in WiMAX and LTE: A feature overview," IEEE Commun. Mag., Vol. 48, No. 5, 8692, 2010.
    doi:10.1109/MCOM.2010.5458368

    3. Azarm, B., et al., "A compact WiMAX band-notched UWB MIMO antenna with high isolation," Radioengineering, Vol. 27, No. 4, 983989, 2018.
    doi:10.13164/re.2018.0983

    4. Quddus, A., et al., "Compact electronically reconfigurable WiMAX band-notched ultra-wideband MIMO antenna," Radioengineering, Vol. 27, No. 4, 9981005, 2018.
    doi:10.13164/re.2018.0998

    5. Kamonsin, W., et al., "Dual-band metamaterial based on Jerusalem cross structure with interdigital technique for LTE and WLAN systems," IEEE Access, Vol. 8, 21565-21572, 2020.
    doi:10.1109/ACCESS.2020.2968563

    6. Brown, A. K., et al., "Compact reconfigurable multiple-input-multiple-output antenna for ultra wideband applications," IET Microw. Antennas Propag., Vol. 10, No. 4, 413-419, 2016.
    doi:10.1049/iet-map.2015.0181

    7. Liu, L., et al., "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas Propagat., Vol. 63, No. 5, 1917-1924, 2015.
    doi:10.1109/TAP.2015.2406892

    8. Dissanayake, T. and K. P. Esselle, "Prediction of the Notch frequency of slot loaded printed UWB antennas," IEEE Trans. Antennas Propagat., Vol. 55, No. 11, 3320-3325, 2007.
    doi:10.1109/TAP.2007.908792

    9. Turitsyna, E. G. and S. Webb, "Simple design of FBG-based VSB filters for ultra-dense WDM transmission," Electron. Lett., Vol. 41, No. 2, 89, 2005.
    doi:10.1049/el:20056760

    10. Ojaroudi, M., et al., "Dual band-notched small monopole antenna with novel W-shaped conductor backed-plane and novel T-shaped slot for UWB applications," IET Microw. Antennas Propag., Vol. 7, No. 1, 814, 2013.
    doi:10.1049/iet-map.2012.0180

    11. Sipal, D., et al., "Compact band-notched UWB antenna for MIMO applications in portable wireless devices," Microw. Opt. Technol. Lett., Vol. 58, No. 6, 1390-1394, 2016.
    doi:10.1002/mop.29804

    12. Kang, L., et al., "Miniaturized band-notched UWB MIMO antenna with high isolation," Microw. Opt. Technol. Lett., Vol. 58, No. 4, 878-881, 2016.
    doi:10.1002/mop.29691

    13. Tripathi, S., et al., "A compact octagonal fractal UWB MIMO antenna with WLAN band-rejection," Microw. Opt. Technol. Lett., Vol. 57, No. 8, 1919-1925, 2015.
    doi:10.1002/mop.29220

    14. Tripathi, S., et al., "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," Antennas Wirel. Propag. Lett., Vol. 14, 1565-1568, 2015.
    doi:10.1109/LAWP.2015.2412659

    15. Naqvi, A., et al., "Compact planar UWB MIMO antenna with on-demand WLAN rejection," Electron. Lett., Vol. 51, No. 13, 963-964, 2015.
    doi:10.1049/el.2015.1056

    16. Kang, L., et al., "Compact offset microstrip-Fed MIMO antenna for band-notched UWB applications," Antennas Wirel. Propag. Lett., Vol. 14, 1754-1757, 2015.
    doi:10.1109/LAWP.2015.2422571

    17. Malekpour, N., et al., "Compact UWB MIMO antenna with band-notched characteristic," Microw. Opt. Technol. Lett., Vol. 59, No. 5, 1037-1041, 2017.
    doi:10.1002/mop.30462

    18. Khan, S. M., et al., "A compact four elements UWB MIMO antenna with on-demand WLAN rejection," Microw. Opt. Technol. Lett., Vol. 58, No. 2, 270-276, 2016.
    doi:10.1002/mop.29546

    19. Huang, H.-F. and S.-G. Xiao, "MIMO antenna with high frequency selectivity and controllable bandwidth for band-notched UWB applications," Microw. Opt. Technol. Lett., Vol. 58, No. 8, 1886-1891, 2016.
    doi:10.1002/mop.29929

    ., .
    doi:10.1002/mop.29929

    20. Biswal, S. P. and S. Das, "A low-profile dual port UWB-MIMO/diversity antenna with band rejection ability," Int. J. RF Microw. Comput. Aid. Eng., Vol. 28, No. 1, e21159, 2018.
    doi:10.1002/mmce.21159

    21. Srivastava, G. and B. K. Kanuijia, "Compact dual band-notched UWB MIMO antenna with shared radiator," Microw. Opt. Technol. Lett., Vol. 57, No. 12, 2886-2891, 2015.
    doi:10.1002/mop.29459

    22. Huang, H., et al., "Compact polarization diversity ultrawideband MIMO antenna with triple bandnotched characteristics," Microw. Opt. Technol. Lett., Vol. 57, No. 4, 946-953, 2015.
    doi:10.1002/mop.28957

    23. Bhadade, R. S. and S. P. Mahajan, "High gain circularly polarized pentagonal microstrip for massive MIMO base station," AEM, Vol. 8, No. 3, 83-91, 2019.
    doi:10.7716/aem.v8i3.764

    24. Viraja, B., et al., Design and Implementation of Pentagon Patch Antennas WithSlit for Multiband Wireless Applications Ls = 14431448, 2018.

    25. Christina, A., J. Malathi, and D. Thiripurasundari, "Review on isolation techniques in MIMO antenna systems," Indian J. Sci. Technol., Vol. 9, No. 35, 2016.

    26. Chae, S. H., et al., "Analysis of mutualcoupling, correlations, and TARC in WiBro MIMO array antenna," Antennas Wirel. Propag. Lett., Vol. 6, 122-125, 2007.
    doi:10.1109/LAWP.2007.893109

    27. Ibrahim, A. A. and M. A. Abdalla, "CRLH MIMO antenna with reversal configuration," AEU Int. J. Electron. Commun., Vol. 70, No. 9, 1134-1141, 2016.
    doi:10.1016/j.aeue.2016.05.012

    28. Browne, D. W., et al., "Experiments with compact antenna arrays for MIMO radio communications," IEEE Trans. Antennas Propagat., Vol. 54, No. 11, 3239-3250, 2006.
    doi:10.1109/TAP.2006.883973

    29. Manteghi, M. and Y. Rahmat-Samii, "Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 466-474, 2005.
    doi:10.1109/TAP.2004.838794

    30. Nasir, J., et al., "Throughput measurement of a dual-band MIMO rectangular dielectric resonator antenna for LTE applications," Sensors, Vol. 17, No. 1, 148, 2017.
    doi:10.3390/s17010148

    31. Liu, L., et al., "Cable effects on measuring small planar UWB monopole antennas ultrawideband — Curr," Status Futur Trends, 2012.