Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-07-30

Impact of Users' Finger on the Amount and Direction of Radiated Power from a 28 GHz 4-Element MIMO Antenna Mobile Terminal

By Ahmed Mohamed Elshirkasi, Azremi Abdullah Al-Hadi, Ping Jack Soh, Mohd Fais Mansor, Rizwan Khan, and Prayoot Akkaraekthalin
Progress In Electromagnetics Research C, Vol. 104, 85-97, 2020
doi:10.2528/PIERC20060107

Abstract

This paper investigates the effect of index finger position and distance on the radiated power of 4-element MIMO antenna, operating at 28 GHz. The antenna elements (AEs) are located at the top corner of the user terminal and separated at a distance of half a wavelength. Four different finger placements were investigated, one placement over each AE with six interaction distances between the AEs and the finger at each position starting from 0 up to 2.5 mm. When the finger is placed on an edge AE, the other edge AE maintained above 85 % of its free space radiated power irrespective of the interaction distance. However, the radiated power of each AE was severely affected when the finger was placed on it or on the AE adjacent to it. This effect ranged from total blockage at direct interaction with the element (with a distance of 0 mm) to maintaining more than around 60 % of free space radiated power after the interaction distance is increased to more than 2.0 mm. Besides the effects of the index finger on the amount of radiated power, this work also investigated the direction of radiated power resulting from the influence of this finger.

Citation


Ahmed Mohamed Elshirkasi, Azremi Abdullah Al-Hadi, Ping Jack Soh, Mohd Fais Mansor, Rizwan Khan, and Prayoot Akkaraekthalin, "Impact of Users' Finger on the Amount and Direction of Radiated Power from a 28 GHz 4-Element MIMO Antenna Mobile Terminal," Progress In Electromagnetics Research C, Vol. 104, 85-97, 2020.
doi:10.2528/PIERC20060107
http://jpier.org/PIERC/pier.php?paper=20060107

References


    1. Gupta, A. and R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," IEEE Access, Vol. 3, 1206-1232, 2015.
    doi:10.1109/ACCESS.2015.2461602

    2. Kim, Y., et al., "Feasibility of mobile cellular communications at millimeter wave frequency," IEEE J. Sel. Top. Signal Process., Vol. 10, No. 3, 589-599, 2016.
    doi:10.1109/JSTSP.2016.2520901

    3. Wang, C.-X., et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Commun. Mag., Vol. 52, No. 2, 122-130, 2014.
    doi:10.1109/MCOM.2014.6736752

    4. Rappaport, T. S., R. W. Heath Jr, R. C. Daniels, and J. N. Murdock, Millimeter Wave Wireless Communications, Pearson Education, 2014.

    5. Dehos, C., J. L. Gonzalez, A. De Domenico, D. Ktenas, and L. Dussopt, "Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems?," IEEE Commun. Mag., Vol. 52, No. 9, 88-95, 2014.
    doi:10.1109/MCOM.2014.6894457

    6. Giordani, M., M. Mezzavilla, and M. Zorzi, "Initial access in 5G mmWave cellular networks," IEEE Commun. Mag., Vol. 54, No. 11, 40-47, 2016.
    doi:10.1109/MCOM.2016.1600193CM

    7. Almasi, M. A., H. Mehrpouyan, V. Vakilian, N. Behdad, and H. Jafarkhani, "A new reconfigurable antenna MIMO architecture for mmWave communication," 2018 IEEE International Conference on Communications (ICC), 1-7, 2018.

    8. Marcus, M. J., "5G and IMT for 2020 and beyond [Spectrum Policy and Regulatory Issues]," IEEE Wirel. Commun., Vol. 22, No. 4, 2-3, 2015.
    doi:10.1109/MWC.2015.7224717

    9. Sun, S., T. S. Rappaport, M. Shafi, P. Tang, J. Zhang, and P. J. Smith, "Propagation models and performance evaluation for 5G millimeter-wave bands," IEEE Trans. Veh. Technol., Vol. 67, No. 9, 8422-8439, 2018.
    doi:10.1109/TVT.2018.2848208

    10. Samimi, M. K. and T. S. Rappaport, "3-D millimeter-wave statistical channel model for 5G wireless system design," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 7, 2207-2225, 2016.
    doi:10.1109/TMTT.2016.2574851

    11. Naqvi, A. H. and S. Lim, "Review of recent phased arrays for millimeter-wave wireless communication," Sensors, Vol. 18, No. 10, 3194, 2018.
    doi:10.3390/s18103194

    12. Liu, J., A. Vosoogh, A. U. Zaman, and J. Yang, "Design and fabrication of a high-gain 60-GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 2117-2122, 2017.
    doi:10.1109/TAP.2017.2670509

    13. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, 2014.
    doi:10.1109/MCOM.2014.6736750

    14. Ojaroudiparchin, N., M. Shen, S. Zhang, and G. F. Pedersen, "A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1747-1750, 2016.
    doi:10.1109/LAWP.2016.2532607

    15. Zhang, S., X. Chen, I. Syrytsin, and G. F. Pedersen, "A planar switchable 3-D-coverage phased array antenna and its user effects for 28-GHz mobile terminal applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6413-6421, 2017.
    doi:10.1109/TAP.2017.2681463

    16. Hussain, M. T., M. S. Sharawi, S. Podilchack, and Y. M. M. Antar, "Closely packed millimeter-wave MIMO antenna arrays with dielectric resonator elements," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.

    17. Liu, D., X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antenna-in-package design considerations for Ka-band 5G communication applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6372-6379, 2017.
    doi:10.1109/TAP.2017.2722873

    18. Niu, Y., Y. Li, D. Jin, L. Su, and A. V Vasilakos, "A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges," Wirel. Networks, Vol. 21, No. 8, 2657-2676, 2015.
    doi:10.1007/s11276-015-0942-z

    19. Zhao, K., J. Helander, D. Sjoberg, S. He, T. Bolin, and Z. Ying, "User body effect on phased array in user equipment for the 5G mmWave communication system," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 864-867, 2017.
    doi:10.1109/LAWP.2016.2611674

    20. Raghavan, V., et al., "Statistical blockage modeling and robustness of beamforming in millimeter-wave systems," IEEE Trans. Microw. Theory Tech., 2019.

    21. Wu, T., T. S. Rappaport, and C. M. Collins, "Safe for generations to come: Considerations of safety for millimeter waves in wireless communications," IEEE Microw. Mag., Vol. 16, No. 2, 65-84, 2015.
    doi:10.1109/MMM.2014.2377587

    22. 3GPP T R 38.901, Study on channel model for frequencies from 0.5 to 100 GHz, 2017.

    23. Wu, T., T. S. Rappaport, and C. M. Collins, "The human body and millimeter-wave wireless communication systems: Interactions and implications," 2015 IEEE International Conference on Communications (ICC), 2423-2429, 2015.
    doi:10.1109/ICC.2015.7248688

    24. Syrytsin, I., S. Zhang, G. Pedersen, K. Zhao, T. Bolin, and Z. Ying, "Statistical investigation of the user effects on mobile terminal antennas for 5G applications," IEEE Trans. Antennas Propag., 2017.

    25. Syrytsin, I., S. Zhang, and G. F. Pedersen, "User impact on phased and switch diversity arrays in 5G mobile terminals," IEEE Access, Vol. 6, 1616-1623, 2018.
    doi:10.1109/ACCESS.2017.2779792

    26. Raghavan, V., M.-L. Chi, M. A. Tassoudji, O. H. Koymen, and J. Li, "Antenna placement and performance tradeoffs with hand blockage in millimeter wave systems," IEEE Trans. Commun., Vol. 67, No. 4, 3082-3096, 2019.
    doi:10.1109/TCOMM.2019.2891669

    27. Alammouri, A., J. Mo, B. L. Ng, J. C. Zhang, and J. G. Andrews, "Hand grip impact on 5G mm wave mobile devices," IEEE Access, Vol. 7, 60532-60544, 2019.
    doi:10.1109/ACCESS.2019.2914685

    28. Xu, B., et al., "Radiation performance analysis of 28 GHz antennas integrated in 5G mobile terminal housing," IEEE Access, Vol. 6, 48088-48101, 2018.
    doi:10.1109/ACCESS.2018.2867719

    29. Nguyen, T. Q. K., M. S. Miah, L. Lizzi, K. Haneda, and F. Ferrero, "Experimental evaluation of user’s finger effects on a 5G terminal antenna array at 26 GHz," IEEE Antennas Wirel. Propag. Lett., 2020.

    30. Khan, R., A. A. Al-Hadi, and P. J. Soh, "Efficiency of millimeter wave mobile terminal antennas with the influence of users," Progress In Electromagnetics Research, Vol. 161, 113-123, 2018.
    doi:10.2528/PIER18012409

    31. Gross, F., Smart Antennas with Matlab: Principles and Applications in Wireless Communication, McGraw Hill Professional, 2015.