Vol. 105

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-29

Compact Triple-Band CPW-Fed Square Slot Antenna with Dual-Polarization Characteristics for Wireless Applications

By Ting Wu, Juan Chen, and Peng-Fei Wu
Progress In Electromagnetics Research C, Vol. 105, 241-251, 2020
doi:10.2528/PIERC20052703

Abstract

In this paper, a compact triple-band coplanar waveguide (CPW)-fed patch antenna with dual-polarization characteristics for wireless applications is proposed. The antenna is composed of an F-shaped patch, a grounded-C strip, a rectangular strip, and a horizontal rectangular grounded slot. The first circular polarized band is obtained by the F-shaped feed-line, and the second is achieved by the left C-shaped strip, while the right rectangle strip is responsible for the lower linearly polarized band. By inserting a slot at the right of the square slot, a notched band centered at 5.5 GHz is achieved. Both simulated and experimental results show that the antenna can generate three separate impedance bandwidths to cover frequency bands of 2.4/5.2/5.8-GHz WLAN band and X band. And the antenna is circularly polarized in the 5.8 GHz and 10GHz band. Furthermore, the antenna structure is extremely simple and occupies small space. The proposed antenna has its applications in compact and portable devices operating at multiple frequency bands like cellular phones, Tablets, Wi-Fi devices, etc.

Citation


Ting Wu, Juan Chen, and Peng-Fei Wu, "Compact Triple-Band CPW-Fed Square Slot Antenna with Dual-Polarization Characteristics for Wireless Applications," Progress In Electromagnetics Research C, Vol. 105, 241-251, 2020.
doi:10.2528/PIERC20052703
http://jpier.org/PIERC/pier.php?paper=20052703

References


    1. Naser-Moghadasi, M., et al., "A small dual-band CPW-fed monopole antenna for GSM and WLAN applications," IEEE Antennas & Wireless Propagation Letters, Vol. 12, 508-511, 2013.
    doi:10.1109/LAWP.2013.2256456

    2. Shaw, T., D. Bhattacharjee, and D. Mitra, "Gain enhancement of slot antenna using zero-index metamaterial superstrate," International Journal of RF & Microwave Computer Aided Engineering, Vol. 27, No. 4, e21078, 2017.
    doi:10.1002/mmce.21078

    3. Bai, H., G. M. Wang, and T. Wu, "High-gain wideband metasurface antenna with low profile," IEEE Access, Vol. 7, 177266-177273, 2019.
    doi:10.1109/ACCESS.2019.2958050

    4. Kurra, L., et al., "FSS properties of a uni-planar EBG and its application in directivity enhancement of a microstrip antenna," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 1606-1609, 2016.
    doi:10.1109/LAWP.2016.2518299

    5. Meriche, M. A., et al., "Gain improvement of a wideband monopole antenna with novel artificial magnetic conductor," 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2016.

    6. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2463-2471, 2014.

    7. Ge, Y., K. P. Esselle, and T. S. Bird, "A method to design dual-band,high-directivity EBG resonator antennas using single-resonant, singlelayer partially reflective surface," Progress In Electromagnetics Research C, Vol. 13, 245-257, 2010.

    8. Tak, J., Y. Hong, and J. Choi, "Textile antenna with EBG structure for body surface wave enhancement," Electronics Letters, Vol. 51, No. 15, 1131-1132, 2015.

    9. Hashmi, R. M. and K. P. Esselle, "Enhancing the performance of EBG resonator antennas by individually truncating the superstructure layers," IET Microwaves Antennas & Propagation, Vol. 10, No. 10, 1048-1055, 2016.

    10. Chen, T. C. and C. Y. Tsai, "CPW-fed wideband printed dipole antenna for digital TV applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4826-4830, 2011.

    11. Ghobadi, A. and M. Dehmollaian, "A printed circularly polarized Y-shaped monopole antenna," IEEE Antennas & Wireless Propagation Letters, Vol. 11, 22-25, 2012.

    12. Lacik, J., "Circularly polarized SIW square ring-slot antenna for X-band applications," Microwave & Optical Technology Letters, Vol. 54, No. 11, 2590-2594, 2012.

    13. Saraswat, K., T. Kumar, and A. R. Harish, "A corrugated G-shaped grounded ring slot antenna for wideband circular polarization," International Journal of Microwave & Wireless Technologies, 1-6, 2020.

    14. Hua, M. J., et al., "Compact tri-band CPW-fed antenna for WLAN/WiMAX applications," Electronics Letters, Vol. 49, No. 18, 1118-1119, 2013.

    15. Chandra, K., M. Kumar, and M. D. Upadhayay, "Compact triple-band CPW-fed monopole antenna for bluetooth/WiMAX/WLAN applications," Iranian Journal of Science and Technology — Transactions of Electrical Engineering, No. 1, 2019.

    16. Manouare, A. Z., et al., "Design, fabrication and measurement of a novel compact triband CPW-fed planar monopole antenna using multi-type slots for wireless communication applications," Journal of Circuits, Systems and Computers, 2019.

    17. Jo, G. J., et al., "Novel design of a CPW-fed monopole antenna with three Arc-shaped strips for WLAN/WIMAX operations," Microwave and Optical Technology Letters, Vol. 57, No. 2, 268-273, 2015.

    18. Iqbal, A., O. A. Saraereh, and S. K. Jaiswal, "Maple leaf shaped UWB monopole antenna with dual band notch functionality," Progress In Electromagnetics Research C, Vol. 71, 169-175, 2017.

    19. Tao, J. and Q. Feng, "Compact UWB band-notch MIMO antenna with embedded antenna element for improved band notch filtering," Progress In Electromagnetics Research C, Vol. 67, 117-125, 2016.

    20. Kamma, A., et al., "Multi-band notch UWB band pass filter with novel contiguous split rings embedded in symmetrically tapered elliptic," Progress In Electromagnetics Research C, Vol. 39, 133-148, 2013.

    21. Yang, D., et al., "A vivaldi antenna with switchable and tunable band-notch characteristic," Progress In Electromagnetics Research C, Vol. 68, 75-83, 2016.

    22. Russo, I., L. Boccia, G. Amendola, and H. Schumacher, "Compact hybrid coaxial architecture for 3–10 GHz UWB quasi-optical power combiners," Progress In Electromagnetics Research, Vol. 122, 77-92, 2012.

    23. Awan, W. A., et al., "A miniaturized wideband and multi-band on-demand reconfigurable antenna for compact and portable devices," International Journal of Electronics and Communications, Vol. 122, 153266, 2020.

    24. Chandra, K., M. Kumar, and M. D. Upadhayay, "Compact triple-band CPW-fed monopole antenna for bluetooth/WiMAX/WLAN applications," Iranian Journal of Science and Technology — Transactions of Electrical Engineering, Vol. 1, 1-7, 2019.

    25. Pandit, Vivek, and Kumar, "A compact CPW-fed tapered monopole triple-band antenna for WLAN/WiMAX application," Microwave & Optical Technology Letters, 2298-2303, 2018.

    26. Mohammad Saadh, A. W. and R. Poonkuzhali, "A compact CPW fed multiband antenna for WLAN/INSAT/WPAN applications," International Journal of Electronics and Communications, Vol. 109, 128-135, 2019.