Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-21

Capacity and Efficiency Improvement of MIMO Antenna Systems for 5G Handheld Terminals

By Ahmad H. Abdelgwad and Mohammod Ali
Progress In Electromagnetics Research C, Vol. 104, 269-283, 2020
doi:10.2528/PIERC20052103

Abstract

The efficacy of including a defected ground structure (DGS) for mobile communication on a mobile phone PCB in improving the multiple input multiple output (MIMO) system performance is evaluated and demonstrated in the context of single and multiple-element two-port planar inverted-F antennas (PIFAs). The proposed scheme designed and developed for operation in the 3.5 GHz long term evolution (LTE) and future 5G frequency bands demonstrates efficiency improvement by 15% and capacity improvement by around 7% because of the significant reduction in mutual coupling between the antenna ports. Results in free space as well as next to a human head and hand phantom are presented.

Citation


Ahmad H. Abdelgwad and Mohammod Ali, "Capacity and Efficiency Improvement of MIMO Antenna Systems for 5G Handheld Terminals," Progress In Electromagnetics Research C, Vol. 104, 269-283, 2020.
doi:10.2528/PIERC20052103
http://jpier.org/PIERC/pier.php?paper=20052103

References


    1. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw., Antennas Propag., Vol. 11, No. 2, 271-279, 2017.
    doi:10.1049/iet-map.2016.0738

    2. Kildal, P. S. and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency and diversity gain of their antennas: Simulations and measurements in a reverberation chamber," IEEE Commun. Mag., Vol. 42, No. 12, 104-112, Dec. 2004.
    doi:10.1109/MCOM.2004.1367562

    3. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 1, 152-156, Jan. 2019.
    doi:10.1109/LAWP.2018.2883428

    4. Abdelgwad, A. H. and M. Ali, "A new pattern and polarization diversity MIMO antenna for handheld devices," IEEE Int. Sympos. Antennas Propag. (APS), Montreal, Canada, 2020.

    5. Deng, J., J. Li, L. Zhao, and L. Guo, "A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 61, 2270-2273, 2018.

    6. Jiang, W., Y. Cui, B. Liu, W. Hu, and Y. Xi, "A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications," IEEE Access, Vol. 7, 112554-112563, 2019.
    doi:10.1109/ACCESS.2019.2934892

    7. Luo, C., J. Hong, and L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1766-1769, Apr. 2015.
    doi:10.1109/LAWP.2015.2423318

    8. Li, M., Y. Ban, Z. Xu, J. Guo, and Z. Yu, "Tri-polarized 12 antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2018.
    doi:10.1109/ACCESS.2017.2781705

    9. Chen, X., S. Zhang, and Q. Li, "A review of mutual coupling in MIMO systems," IEEE Access, Vol. 6, 24706-24719, 2018.
    doi:10.1109/ACCESS.2018.2830653

    10. Abdelgwad, A. H. and M. Ali, "Isolation improvement between closely-spaced antennas using EBG," Int. Applied Comput. Electromagn. Society (ACES) Sympos., Monterey, USA, 2020.

    11. Abdelgwad, A. H. and M. Ali, "Mutual coupling reduction of a two-element MIMO antenna system using defected ground structure," IEEE Int. Sympos. Antennas Propag. (APS), Montreal, Canada, 2020.

    12. Al-Hassan, M. J., T. A. Denideni, and A. R. Sebak, "Millimeter-wave compact EBG structure for mutual coupling reduction applications," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 823-828, Feb. 2015.
    doi:10.1109/TAP.2014.2381229

    13. Mavridou, M., A. P. Feresidis, and P. Gardner, "Tunabledouble-layer EBG structures and application to antenna isolation," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 70-79, Jan. 2016.
    doi:10.1109/TAP.2015.2496619

    14. Abdelgwad, A. H. and M. Ali, "Isolation improvement of a two-port PIFA for MIMO using a planar EBG ground," Microw. Opt. Technol. Lett., Vol. 62, No. 2, 737-742, Feb. 2020.
    doi:10.1002/mop.32059

    15. Li, Y., C. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array insub-6GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018.
    doi:10.1109/ACCESS.2017.2763161

    16. Abdelgwad, A. H. and M. Ali, "Printed dipole MIMO antenna for wireless handheld terminals," 14th European Conf. Antennas Propag. (EuCAP), Copenhagen, Denmark, 2020.

    17. Meshram, M. K., R. K. Animeh, A. T. Pimpale, and N. K. Nikolova, "A novel quad-band diversity antenna for LTE and Wi-Fi applications with high isolation," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4360-4371, Sept. 2012.
    doi:10.1109/TAP.2012.2207044

    18. Chattha, H. T., M. Nasir, Q. H. Abbasi, Y. Huang, and S. S. AlJa’afreh, "Compact low-profile dual-port single wideband planar inverted-F MIMO antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1673-1975, Dec. 2013.
    doi:10.1109/LAWP.2013.2293765

    19. Chattha, H. T., "4-port 2-element MIMO antenna for 5G portable applications," IEEE Access, Vol. 7, 95616-95620, 2019.

    20. Taga, T., "Analysis for mean effective gain for mobile in land mobile radio environments," IEEE Trans. Veh. Technol., Vol. 39, No. 2, 117-131, May 1990.
    doi:10.1109/25.54228

    21. Karaboikis, M., V. Papamichael, G. Tsachtsiris, C. Soras, and V. Makios, "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2067-2078, Jul. 2008.
    doi:10.1109/TAP.2008.924677

    22. Taga, T., "Analysis of correlation characteristics of antenna diversity in land mobile radio environments," Electron. Commun. Jpn., Vol. 74, No. 8, Pt. 1, 101-115, 1991.
    doi:10.1002/ecja.4410740810

    23. Jensen, M. A. and Y. R. Samii, "Performance analysis of antennas for hand-held transceivers using FDTD," IEEE Trans. Antennas Propag., Vol. 42, 1106-1113, Aug. 1994.
    doi:10.1109/8.310002

    24. Stjernman, A., "Relationship between radiation pattern correlation and scattering matrix of lossless and lossy antennas," Electron. Lett., Vol. 41, No. 12, 678-680, 2005.
    doi:10.1049/el:20050988

    25. Takada, J. and K. Ogawa, Concept of diversity antenna gain, Paris, France, EURO-COST 273 TD (3) 142, 2003.

    26. Chen, X., P. Kildal, and J. Carlsson, "Simple calculation of ergodic capacity of lossless two-port antenna system using only S-parameters — Comparison with common Z-parameter approach," IEEE Int. Sympos. Antennas Propag., Spokane, USA, 2011.

    27. Ozdemir, M. K., E. Arvas, and H. Arslan, "Dynamics of spatial correlation and implications on MIMO systems," IEEE Commun. Mag., Vol. 42, No. 6, S14-S19, Jun. 2004.
    doi:10.1109/MCOM.2004.1304227

    28. Song, H. J., A. Bekaryan, J. H. Schaffner, A. Hussain, and P. Kildal, "Effects of mutual coupling on LTE MIMO capacity for monopole array: Comparing reverberation chamber tests and drive tests," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 474-457, Nov. 2014.

    29. Chattha, H. T., Y. Huang, S. J. Boyes, and X. Zhu, "Polarization and pattern diversity-based dual-feed planar inverted-F antenna," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1532-1539, Mar. 2012.
    doi:10.1109/TAP.2011.2180308

    30. Ghosh, S., T. Tran, and T. Le-Ngoc, "Miniaturized four-element diversity PIFA," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 396-400, 2013.
    doi:10.1109/LAWP.2013.2251856

    31. Gago, O., L. Gonzalez, and R. Eickhoff, "Study of the optimum number of radiating elements for different portable devices operating in a MIMO system," European Wirel. Conf., Aalborg, Denmark, 2009.