Vol. 104
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-08-21
Capacity and Efficiency Improvement of MIMO Antenna Systems for 5G Handheld Terminals
By
Progress In Electromagnetics Research C, Vol. 104, 269-283, 2020
Abstract
The efficacy of including a defected ground structure (DGS) for mobile communication on a mobile phone PCB in improving the multiple input multiple output (MIMO) system performance is evaluated and demonstrated in the context of single and multiple-element two-port planar inverted-F antennas (PIFAs). The proposed scheme designed and developed for operation in the 3.5 GHz long term evolution (LTE) and future 5G frequency bands demonstrates efficiency improvement by 15% and capacity improvement by around 7% because of the significant reduction in mutual coupling between the antenna ports. Results in free space as well as next to a human head and hand phantom are presented.
Citation
Ahmad Hamdi Abdelgwad, and Mohammod Ali, "Capacity and Efficiency Improvement of MIMO Antenna Systems for 5G Handheld Terminals," Progress In Electromagnetics Research C, Vol. 104, 269-283, 2020.
doi:10.2528/PIERC20052103
References

1. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw., Antennas Propag., Vol. 11, No. 2, 271-279, 2017.
doi:10.1049/iet-map.2016.0738

2. Kildal, P. S. and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency and diversity gain of their antennas: Simulations and measurements in a reverberation chamber," IEEE Commun. Mag., Vol. 42, No. 12, 104-112, Dec. 2004.
doi:10.1109/MCOM.2004.1367562

3. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 1, 152-156, Jan. 2019.
doi:10.1109/LAWP.2018.2883428

4. Abdelgwad, A. H. and M. Ali, "A new pattern and polarization diversity MIMO antenna for handheld devices," IEEE Int. Sympos. Antennas Propag. (APS), Montreal, Canada, 2020.

5. Deng, J., J. Li, L. Zhao, and L. Guo, "A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 61, 2270-2273, 2018.

6. Jiang, W., Y. Cui, B. Liu, W. Hu, and Y. Xi, "A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications," IEEE Access, Vol. 7, 112554-112563, 2019.
doi:10.1109/ACCESS.2019.2934892

7. Luo, C., J. Hong, and L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1766-1769, Apr. 2015.
doi:10.1109/LAWP.2015.2423318

8. Li, M., Y. Ban, Z. Xu, J. Guo, and Z. Yu, "Tri-polarized 12 antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2018.
doi:10.1109/ACCESS.2017.2781705

9. Chen, X., S. Zhang, and Q. Li, "A review of mutual coupling in MIMO systems," IEEE Access, Vol. 6, 24706-24719, 2018.
doi:10.1109/ACCESS.2018.2830653

10. Abdelgwad, A. H. and M. Ali, "Isolation improvement between closely-spaced antennas using EBG," Int. Applied Comput. Electromagn. Society (ACES) Sympos., Monterey, USA, 2020.

11. Abdelgwad, A. H. and M. Ali, "Mutual coupling reduction of a two-element MIMO antenna system using defected ground structure," IEEE Int. Sympos. Antennas Propag. (APS), Montreal, Canada, 2020.

12. Al-Hassan, M. J., T. A. Denideni, and A. R. Sebak, "Millimeter-wave compact EBG structure for mutual coupling reduction applications," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 823-828, Feb. 2015.
doi:10.1109/TAP.2014.2381229

13. Mavridou, M., A. P. Feresidis, and P. Gardner, "Tunabledouble-layer EBG structures and application to antenna isolation," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 70-79, Jan. 2016.
doi:10.1109/TAP.2015.2496619

14. Abdelgwad, A. H. and M. Ali, "Isolation improvement of a two-port PIFA for MIMO using a planar EBG ground," Microw. Opt. Technol. Lett., Vol. 62, No. 2, 737-742, Feb. 2020.
doi:10.1002/mop.32059

15. Li, Y., C. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array insub-6GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018.
doi:10.1109/ACCESS.2017.2763161

16. Abdelgwad, A. H. and M. Ali, "Printed dipole MIMO antenna for wireless handheld terminals," 14th European Conf. Antennas Propag. (EuCAP), Copenhagen, Denmark, 2020.

17. Meshram, M. K., R. K. Animeh, A. T. Pimpale, and N. K. Nikolova, "A novel quad-band diversity antenna for LTE and Wi-Fi applications with high isolation," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4360-4371, Sept. 2012.
doi:10.1109/TAP.2012.2207044

18. Chattha, H. T., M. Nasir, Q. H. Abbasi, Y. Huang, and S. S. AlJa’afreh, "Compact low-profile dual-port single wideband planar inverted-F MIMO antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1673-1975, Dec. 2013.
doi:10.1109/LAWP.2013.2293765

19. Chattha, H. T., "4-port 2-element MIMO antenna for 5G portable applications," IEEE Access, Vol. 7, 95616-95620, 2019.

20. Taga, T., "Analysis for mean effective gain for mobile in land mobile radio environments," IEEE Trans. Veh. Technol., Vol. 39, No. 2, 117-131, May 1990.
doi:10.1109/25.54228

21. Karaboikis, M., V. Papamichael, G. Tsachtsiris, C. Soras, and V. Makios, "Integrating compact printed antennas onto small diversity/MIMO terminals," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2067-2078, Jul. 2008.
doi:10.1109/TAP.2008.924677

22. Taga, T., "Analysis of correlation characteristics of antenna diversity in land mobile radio environments," Electron. Commun. Jpn., Vol. 74, No. 8, Pt. 1, 101-115, 1991.
doi:10.1002/ecja.4410740810

23. Jensen, M. A. and Y. R. Samii, "Performance analysis of antennas for hand-held transceivers using FDTD," IEEE Trans. Antennas Propag., Vol. 42, 1106-1113, Aug. 1994.
doi:10.1109/8.310002

24. Stjernman, A., "Relationship between radiation pattern correlation and scattering matrix of lossless and lossy antennas," Electron. Lett., Vol. 41, No. 12, 678-680, 2005.
doi:10.1049/el:20050988

25. Takada, J. and K. Ogawa, Concept of diversity antenna gain, Paris, France, EURO-COST 273 TD (3) 142, 2003.

26. Chen, X., P. Kildal, and J. Carlsson, "Simple calculation of ergodic capacity of lossless two-port antenna system using only S-parameters — Comparison with common Z-parameter approach," IEEE Int. Sympos. Antennas Propag., Spokane, USA, 2011.

27. Ozdemir, M. K., E. Arvas, and H. Arslan, "Dynamics of spatial correlation and implications on MIMO systems," IEEE Commun. Mag., Vol. 42, No. 6, S14-S19, Jun. 2004.
doi:10.1109/MCOM.2004.1304227

28. Song, H. J., A. Bekaryan, J. H. Schaffner, A. Hussain, and P. Kildal, "Effects of mutual coupling on LTE MIMO capacity for monopole array: Comparing reverberation chamber tests and drive tests," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 474-457, Nov. 2014.

29. Chattha, H. T., Y. Huang, S. J. Boyes, and X. Zhu, "Polarization and pattern diversity-based dual-feed planar inverted-F antenna," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1532-1539, Mar. 2012.
doi:10.1109/TAP.2011.2180308

30. Ghosh, S., T. Tran, and T. Le-Ngoc, "Miniaturized four-element diversity PIFA," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 396-400, 2013.
doi:10.1109/LAWP.2013.2251856

31. Gago, O., L. Gonzalez, and R. Eickhoff, "Study of the optimum number of radiating elements for different portable devices operating in a MIMO system," European Wirel. Conf., Aalborg, Denmark, 2009.