Vol. 106

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-10-29

Proposal of a New Efficient OR/XOR Logic Gates and All-Optical Nonlinear Switch in 2D Photonic Crystal Lattices

By Lila Mokhtari, Hadjira Abri Badaoui, Mehadji Abri, Moungar Abdelbasset, Farah Lallam, and Bachir Rahmi
Progress In Electromagnetics Research C, Vol. 106, 187-197, 2020
doi:10.2528/PIERC20051501

Abstract

The aim of this paper was to propose and design a photonic crystal drop filter based on ring resonators and study its properties numerically. This structure is constituted in a two-dimensional square lattice. The resonant wavelengths of the PCRR proposed are λ = 1.553 μm, and the extraction efficiency exceeds 99% with a quality factor of 5177. To study the all-optical OR and XOR logic gate function, we calculated the electric field distribution of the 2D photonic crystal for the 1.553 μm signal light. In order to have a large selectivity of filtering and also of having a fast switching in the field of nonlinearity, we increase the number of ring resonators, and the latter are used for designing all optical logic gates which work using the Kerr effect equal to 10-6 m2/w.

Citation


Lila Mokhtari, Hadjira Abri Badaoui, Mehadji Abri, Moungar Abdelbasset, Farah Lallam, and Bachir Rahmi, "Proposal of a New Efficient OR/XOR Logic Gates and All-Optical Nonlinear Switch in 2D Photonic Crystal Lattices," Progress In Electromagnetics Research C, Vol. 106, 187-197, 2020.
doi:10.2528/PIERC20051501
http://jpier.org/PIERC/pier.php?paper=20051501

References


    1. Kim, S. H., H. Y. Ryu, H. G. Park, G. H. Kim, Y. S. Choi, and Y. H. Lee, "Two-dimensional photonic crystal hexagonal waveguide ring laser," Appl. Phys. Lett., Vol. 81, 2499-2501, 2002.
    doi:10.1063/1.1510583

    2. Dinesh Kumar, V., T. Srinivas, and A. Selvarajan, "Investigation of ring resonators in photonic crystal circuits," Photon. Nanostruct., Vol. 2, 199-206, 2004.
    doi:10.1016/j.photonics.2004.11.001

    3. Qiang, Z., W. Zhou, and R. A. Soref, "Optical add-drop filters based on photonic crystal ring resonators," Opt. Express, Vol. 15, 1823-1831, 2007.
    doi:10.1364/OE.15.001823

    4. Robinson, S. and R. Nakkeeran, "Investigation on two dimensional photonic crystal resonant cavity based band pass filter," Optik, Vol. 123, 451-457, 2012.
    doi:10.1016/j.ijleo.2011.05.004

    5. Djavid, M. and M. S. Abrishamian, "Multi-channel drop filters using photonic crystal ring resonators," Optik, Vol. 123, 167-170, 2012.
    doi:10.1016/j.ijleo.2011.04.001

    6. Alipour-Banaei, H., F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, "T-shaped channel drop filter based onphotonic crystal ring resonator," Optik, Vol. 125, 4718-4721, 2014.
    doi:10.1016/j.ijleo.2014.04.084

    7. Alipour-Banaei, H., F. Mehdizadeh, and S. Serajmohammadi, "A novel 4-channel demultiplexer based on photonic crystal ring resonators," Optik, 2013, http://dx.doi.org/10.1016/j.ijleo.2013.04.117.

    8. Alipour Banaeia, H., S. Seraj mohammadib, and F. Mehdizadehc, "Alloptical NOR and NAND gate based on nonlinear photonic crystal ring resonators," Optik, Vol. 125, 5701-5704, 2014.
    doi:10.1016/j.ijleo.2014.06.013

    9. Mahmoud, M. Y., G. Bassou, A. Taalbi, and Z. M. Chekroun, "Optical channel drop filter based on photonic crystal ring resonators," Optics Communications, Vol. 285, 368-372, 2012.
    doi:10.1016/j.optcom.2011.09.068

    10. Birjandi, M. A. M. and M. R. Rakhshani, "A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators," Optik, 2013, http://dx.doi.org/10.1016/j.ijleo.2013.04.128.

    11. Saidani, N., W. Belhadj, and F. Abdel Malek, "Novel all-optical logic gates based photonic crystal waveguide using self imaging phenomena," Optical Quantum Electron., Vol. 47, 1829-1846, 2015.
    doi:10.1007/s11082-014-0047-4

    12. Isfahani, B. M., T. Ahamdi Tameh, N. Granpayeh, and A. M. Javan, "All optical NOR gate based on nonlinear photonic crystal microring resonators," Optical Society of America, Vol. 26, 1097-102, May 2009.
    doi:10.1364/JOSAB.26.001097

    13. Moungar, A., H. Badaoui, and M. Abri, "16-channels wavelength efficient demultiplexing around 1.31/1.55 µm in 2D photonic crystal slab," Optik, 2019, https://doi.org/10.1016/j.ijleo.2019.04.032.

    14. Skauli, T., P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," Journal of Applied Physics, Vol. 94, No. 10, 6447-6455, 2003.
    doi:10.1063/1.1621740

    15. Mohammadi, M. and M. Seifouri, "A new proposal for a high-performance 4-channel demultiplexer based on 2D photonic crystal using three cascaded ring resonators for applications in advanced optical systems," Optical and Quantum Electronics, Vol. 51, 350, 2019, https://doi.org/10.1007/s11082-019-2061-z.
    doi:10.1007/s11082-019-2061-z

    16. Ma, Z. and K. Ogusu, "Channel drop filters using photonic crystal Fabry-Perot resonators," Optics Communications, Vol. 284, No. 5, 1192-1196, March 2011.
    doi:10.1016/j.optcom.2010.10.050

    17. Delphi, G., S. Olyaee, M. Seifouri, and A. Mohebzadeh-Bahabady, "Design of an add filter and a 2-channel optical demultiplexer with high-quality factor based on nano-ring resonator," Journal of Computational Electronics, Vol. 4, 2019.

    18. Hsiao, F. L. and C. Lee, "A nano-ring resonator based on 2-D hexagonal-lattice photonic crystals," Proceedings of the International Conference on Optical MEMs and Nanophotonics, 107-108, 2009.

    19. Andalib, P. and N. Granpayeh, "Optical add/drop filter based on dual curved photonic crystal resonator," Proceedings of the International Conference on Optical MEMs and Nanophotonics, 170-171, 2008.

    20. Gupta, N. D. and V. Janyani, "Dense wavelength division Demultiplexing using photonic crystal waveguides based on cavity resonance," Optik, Vol. 125, 5833-5836, 2014.
    doi:10.1016/j.ijleo.2014.07.024

    21. Radhouene, M., M. Najjar, M. Chhipa, S. Robinson, and B. Suthar, "Performance optimization of six channels WDM demultiplexer based on photonic crystal structure," Journal of Ovonic Research, Vol. 13, No. 5, 291-297, 2017.

    22. Talebzadeh, R., M. Soroosh, and T. Daghooghi, "A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity," IETE Journal of Research, Vol. 62, No. 6, 866-872, 2016.
    doi:10.1080/03772063.2016.1217175

    23. Cuesta-Soto, F. L., et al., "All-optical switching structure based on a photonic crystal directional coupler," Opt. Express, Vol. 12, 161-167, 2004.
    doi:10.1364/OPEX.12.000161

    24. Grande, M., et al., "Optical filter with very large stopband (≈ 300 nm) based on a photonic-crystal vertical-directional coupler," Opt. Lett., Vol. 34, 3292-3294, 2009.
    doi:10.1364/OL.34.003292

    25. Stomeo, T., et al., "Optical filter based on two coupled PhC GaAs-membranes," Opt. Lett., Vol. 35, 411-413, 2010.
    doi:10.1364/OL.35.000411

    26. Rahmati, A. T. and N. Granpayeh, "Kerr nonlinear switch based on ultra-compact photonic crystal directional coupler," Optik, Vol. 122, No. 6, 2011.
    doi:10.1016/j.ijleo.2010.04.004

    27. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.
    doi:10.2528/PIERL12072401

    28. Calo, G. and V. Petruzzelli, "Compact design of photonic crystal ring resonator 2 × 2 routers as building blocks for photonic networks on chip," Journal of the Optical Society of America B: Optical Physics, Vol. 31, No. 3, 517-525, 2014.
    doi:10.1364/JOSAB.31.000517

    29. Shirdel, M. and M. A. Mansouri-Birjandi, "Photonic crystal all-optical switch based on a nonlinear cavity," Optik, Vol. 127, No. 8, 3955-3958, 2016.
    doi:10.1016/j.ijleo.2016.01.114

    30. Geraili, M. R., et al., "A proposal for an all optical full adder using nonlinear photonic crystal ring resonators," Optik, Vol. 199, Article 163359, 2019.

    31. Meng, Z.-M., et al., "Theoretical investigation of integratable photonic crystal nanobeam all-optical switching with ultrafast response and ultralow switching energy," 2020 J. Phys. D: Appl. Phys., Vol. 53, 205105, 2020.
    doi:10.1088/1361-6463/ab768c

    32. Ooka, Y., et al., "Ultrasmall in-plane photonic crystal demultiplexers fabricated with photolighography," Opt. Express, Vol. 25, No. 2, 1521-1528, 2017.
    doi:10.1364/OE.25.001521

    33. Dong, G., Y. Wang, and X. Zhang, "High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity," Optics Letters, Vol. 43, No. 24, 5977-5980, 2018.
    doi:10.1364/OL.43.005977