Vol. 103

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-06-19

Improving Bandwidth, Gain and Aperture Efficiency of Patch Antenna Using Hybrid AMC Ground Plane

By Jean de Dieu Ntawangaheza, Liguo Sun, Yongjie Li, and Zipeng Xie
Progress In Electromagnetics Research C, Vol. 103, 71-82, 2020
doi:10.2528/PIERC20030903

Abstract

This paper proposes a new method to enhance the impedance bandwidth (IBW), broadside gain, front-to-back ratio, and aperture efficiency of a rectangular microstrip patch antenna (RMPA) printed on a compact artificial magnetic conductor ground plane (AMC-GND). The technique uses large shorted unit cells at the center and a wide slot cut on the unit cells located under the patch to respectively impede the propagation of surface currents and reduce the adverse effect of the loading capacitance that is formed between the RMPA and the AMC-GND on the antenna IBW. The proposed antenna with dimensions of only 1λ0×0.6λ0×0.06λ0, realizes an IBW of 24% (6.07-7.73 GHz), peak gain of 9.93 dBi, and a simulated aperture efficiency of more than 96%. Due to its compact size, good radiation, and wide IBW performances, the presented antenna can be used in various applications, such as MIMO antenna system, wide-angle scanning antenna array and reflector feed antennas operating in satellite C-band 5.9-6.4 GHz and 6.425-6.75 GHz. It is worth mentioning that the main contribution of the current work is the investigation of the detrimental effects of the overlay capacitor on the IBW of a linearly polarized RMPA etched on a compact AMC surface using a simple equivalent circuit model.

Citation


Jean de Dieu Ntawangaheza, Liguo Sun, Yongjie Li, and Zipeng Xie, "Improving Bandwidth, Gain and Aperture Efficiency of Patch Antenna Using Hybrid AMC Ground Plane," Progress In Electromagnetics Research C, Vol. 103, 71-82, 2020.
doi:10.2528/PIERC20030903
http://jpier.org/PIERC/pier.php?paper=20030903

References


    1. Qu, D., et al., "Improving microstrip patch antenna performance using EBG substrates," IEE Proceedings --- Microwaves, Antennas Propag., Vol. 153, No. 6, 558-563, Dec. 2006.
    doi:10.1049/ip-map:20060015

    2. Ntawangaheza, J. D., et al., "Thin profile wideband and high gain microstrip patch antenna on a modified AMC," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 12, 2518-2522, Dec. 2019.
    doi:10.1109/LAWP.2019.2942056

    3. Luk, K. M., et al., "Broadband microstirp patch antenna," Electron. Let., Vol. 34, 1442-1443, 1998.
    doi:10.1049/el:19981009

    4. Aanandan, C. K., et al., "Broad-band gap coupled microstrip antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 10, 1581-1586, Oct. 1990.
    doi:10.1109/8.59771

    5. Lee, R. Q. and K. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1298-1302, Aug. 1990.
    doi:10.1109/8.56971

    6. Targonski, S. D., et al., "Design of wide-band aperture stacked microstrip patch antennas ," IEEE Trans. Antennas Propag., Vol. 46, No. 9, 1245-1251, 1998.
    doi:10.1109/8.719966

    7. Clenet, M. and L. Shafai, "Multiple resonances and polarisation of U-slot patch antenna," Electron. Lett., Vol. 35, No. 2, 101-103, Jan. 21, 1999.
    doi:10.1049/el:19990087

    8. Khan, Q. U., et al., "Use of slots to improve performance of patch in terms of gain and sidelobes reduction," IEEE Antennas Wireless Propag. Lett., Vol. 14, 422-425, 2015.
    doi:10.1109/LAWP.2014.2365588

    9. He, Y., et al., "Dual linearly polarized microstrip antenna using a slot-loaded TM50 mode," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 12, 2344-2348, Dec. 2018.
    doi:10.1109/LAWP.2018.2874472

    10. Zhang, X. and L. Zhu, "Gain-enhanced patch antennas with loading of shorting pins," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3310-3318, Aug. 2016.
    doi:10.1109/TAP.2016.2573860

    11. Umar Khan, Q., et al., "Higher order modes: A solution for high gain, wide band patch antennas for different vehicular applications ," IEEE Trans. Vehicular Technology, Vol. 66, No. 5, 3548-3554, May 2017.

    12. Foroozesh, A. and L. Shafai, "Improvements in the performance of compact microstrip antennas using AMC ground planes," 2010 14th International Symposium on Antenna Technology and Applied Electromagnetics & the American Electromagnetics Conference, 1-4, Ottawa, ON, 2010.

    13. Majumder, B., et al., "Compact broadband directive slot antenna loaded with cavities and single and double layers of metasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4595-4606, Nov. 2016.
    doi:10.1109/TAP.2016.2601346

    14. Malekpoor, H. and S. Jam, "Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4626-4638, Nov. 2016.
    doi:10.1109/TAP.2016.2607761

    15. Chen, D., W. Yang, and W. Che, "High-gain patch antenna based on cylindrically projected EBG planes," IEEE Antennas Wireless Propag. Letts., Vol. 17, No. 12, 2374-2378, Dec. 2018.
    doi:10.1109/LAWP.2018.2875778

    16. Zhu, S. Li, et al., "Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor," IEEE Antennas Wireless Propag. Letts., Vol. 17, No. 3, 458-462, Mar. 2018.
    doi:10.1109/LAWP.2018.2795018

    17. Yang, W., et al., "A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures," IEEE Antennas Wireless Propag. Lett., Vol. 12, 769-772, 2013.
    doi:10.1109/LAWP.2013.2270943

    18. Yang, W., et al., "High-efficiency high-isolation dual-orthogonally polarized patch antennas using nonperiodic RAMC structure," IEEE Trans. Antennas Propag., Vol. 65, No. 2, 887-892, Feb. 2017.
    doi:10.1109/TAP.2016.2632700

    19. Foroozesh, A. and L. Shafai, "Application of combined electric- and magnetic-conductor ground planes for antenna performance enhancement," Canadian Journal of Electrical and Computer Engineering, Vol. 33, No. 2, 87-98, Spring 2008.
    doi:10.1109/CJECE.2008.4621833

    20. Jagtap, S., et al., "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas Wireless Propag. Letters, Vol. 17, No. 3, 509-512, Mar. 2018.
    doi:10.1109/LAWP.2018.2799873

    21. Yang, W., W. Che, and H. Wang, "High-gain design of a patch antenna using stub-loaded artificial magnetic conductor," IEEE Antennas Wireless Propag. Letters, Vol. 12, 1172-1175, 2013.
    doi:10.1109/LAWP.2013.2280576

    22. Liu, W., et al., "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3325-3329, Jul. 2015.
    doi:10.1109/TAP.2015.2429741

    23. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1165-1172, Mar. 2014.
    doi:10.1109/TAP.2013.2293788

    24. Gao, G., C. Yang, B. Hu, R. Zhang, and S.Wang, "A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 2, 288-292, Feb. 2019.
    doi:10.1109/LAWP.2018.2889117

    25. Mateos, R. M., C. Craeye, and G. Toso, "High-gain wideband low-profile anenna," Microw. Opt. Techol. Lett., Vol. 48, No. 12, 2615-2619, 2006.
    doi:10.1002/mop.21987

    26. Zhong, Y., et al., "Gain enhancement of bow-tie antenna using fractal wideband artificial magnetic conductor ground," Electron. Lett., Vol. 51, No. 4, 315-317, 2015.
    doi:10.1049/el.2014.4017

    27. Nie, N., X. Yang, Z. N. Chen, and B. Wang, "A low-profile wideband hybrid metasurface antenna array for 5G andWiFi systems," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 665-671, Feb. 2020.
    doi:10.1109/TAP.2019.2940367

    28. Alharbi, M., et al., "Hybrid circular ground planes for high-realized-gain low-profile loop antennas," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 8, 1426-1429, Aug. 2018.
    doi:10.1109/LAWP.2018.2848840

    29. Sun, W., Y. Li, Z. Zhang, and P. Chen, "Low-profile and wideband microstrip antenna using quasi-periodic aperture and slot-to-CPW transition," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 632-637, Jan. 2019.
    doi:10.1109/TAP.2018.2874801

    30. Li, T. and Z. N. Chen, "A dual-band metasurface antenna using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5620-5624, Oct. 2018.
    doi:10.1109/TAP.2018.2860121

    31. Yang, M., Z. N. Chen, P. Y. Lau, X. Qing, and X. Yin, "Miniaturized patch antenna with grounded strips," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 843-848, Feb. 2015.
    doi:10.1109/TAP.2014.2382668

    32., , https://en.wikipedia.org/wiki/Metamaterial antenna (accessed 29 Nov. 2019).
    doi:10.1109/TAP.2014.2382668

    33. Canet-Ferrer, J., "Metamaterials and metasurfaces," Intechopen, 2019.

    34. Alibakhshikenari, M., et al., "Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band," Radio Science, Vol. 53, No. 2, 154-165, Feb. 2018.
    doi:10.1002/2017RS006515

    35. Alibakhshikenari, M., et al., "Miniaturized planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, No. 7, 1080-1086, Jun. 2018.
    doi:10.1049/iet-map.2016.1141

    36. Alibakhshikenari, M., et al., "Beam-scanning leaky-wave antenna based on CRLH-metamaterial for millimeter-wave applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1129-1133, Jul. 2019.
    doi:10.1049/iet-map.2018.5101

    37. Alibakhshikenari, M., et al., "High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub terahertz integrated circuits," Sci. Rep., Vol. 10, 4298, Mar. 2020.
    doi:10.1038/s41598-020-61099-8

    38. Alharbi, M. S., et al., "Performance enhancement of square-ring antennas exploiting surface-wave metasurfaces," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 10, 1991-1995, Oct. 2019.
    doi:10.1109/LAWP.2019.2936020

    39. Alibakhshikenari, M., et al., "Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, No. 3, 183-188, Feb. 2020.
    doi:10.1049/iet-map.2019.0362

    40. Alibakhshikenari, M., et al., "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading," IEEE Access, Vol. 7, 23606-23614, Mar. 5, 2019.

    41. Alibakhshikenari, M., et al., "Study on isolation and radiation behaviours of a 34 × 34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125-300 GHz," Optik, International Journal for Light and Electron Optics, Dec. 2019.

    42. Alibakhshikenari, M., et al., "Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018.
    doi:10.2528/PIERL18021908

    43. Wang, Z., et al., "An accurate edge extension formula for calculating resonant frequency of electrically thin and thick rectangular patch antennas," IEEE Access, Vol. 4, 2388-2397, Jun. 2016.
    doi:10.1109/ACCESS.2016.2565684

    44. Sievenpiper, D., et al., "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Micr. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
    doi:10.1109/22.798001