Vol. 101
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-28
28/38 GHz Dual-Band Yagi-Uda Antenna with Corrugated Radiator and Enhanced Reflectors for 5G MIMO Antenna Systems
By
Progress In Electromagnetics Research C, Vol. 101, 159-172, 2020
Abstract
A novel design of an enhanced Yagi-Uda antenna is introduced for dual-band operation at 28/38 GHz. The antenna is constructed by a corrugated dipole strip and a capacitively end-coupled extension strip as the driving element, two reflectors, and one director. Periodic parasitic elements are added in front of the reflectors to enhance the antenna gain and improve the impedance matching. The driving dipole is fed through a coplanar strip line, and in order to facilitate the experimental measurements using a coaxial feed line, a microstrip to coplanar strip (CPS) line transition is employed. A four-port MIMO antenna system is constructed using the proposed Yagi-Uda antenna arranged at the edges of the mobile handset. Numerical and experimental investigations are achieved to assess the performance of both the single-element antenna and the four-port MIMO antenna system. It is shown that the simulation results agree with the experimental measurements, and both show good performance of the single antenna as well as the MIMO antenna system. The bandwidths achieved around 28 GHz and 38 GHz are about 3.42 GHz and 1.45 GHz, respectively, using the microstrip feed line. Each antenna has a maximum gain of about 9 dB. The four antenna configuration shows radiation pattern diversity required for MIMO system. The envelope correlation coefficient (ECC) and diversity gain (DG) are calculated, and the results show that the proposed MIMO antenna system is suitable for the forthcoming 5G mobile communications.
Citation
Asmaa Elsayed Farahat, and Khalid Fawzy Ahmed Hussein, "28/38 GHz Dual-Band Yagi-Uda Antenna with Corrugated Radiator and Enhanced Reflectors for 5G MIMO Antenna Systems," Progress In Electromagnetics Research C, Vol. 101, 159-172, 2020.
doi:10.2528/PIERC20022603
References

1. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

2. Rappaport, T. S., F. Gutierrez, E. Ben-Dor, J. N. Murdock, Y. Qiao, and J. I. Tamir, "Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1850-1859, 2013.
doi:10.1109/TAP.2012.2235056

3. Narayan, C., Antennas and Propagation, , Technical Publications, 2007.

4. Alejos, A. V., M. G. Sanchez, and I. Cuinas, "Measurement and analysis of propagation mechanisms at 40 GHz: Viability of site shielding forced by obstacles," IEEE Trans. Veh. Technol., Vol. 57, No. 6, 3369-3380, 2008.
doi:10.1109/TVT.2008.920052

5. Rajagopal, S., S. Abu-Surra, Z. Pi, and F. Khan, "Antenna array design for multi-gbps mm wave mobile broadband communication," Global Telecommunications Conference (GLOBECOM). IEEE, 1-6, 2011.

6. Sulyman, A. I., A. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeterwave bands ," IEEE Communications Magazine, Vol. 52, 78-86, 2014.
doi:10.1109/MCOM.2014.6894456

7. Sharawi, M. S., K. Podilchak, M. T. Hussain, and Y. M. M. Antar, "Dielectric resonator based MIMO antenna system enabling millimeter-wave mobile devices," IET Microwaves, Antennas & Propagation, 287-293, 2017.
doi:10.1049/iet-map.2016.0457

8. Tu, D. T. T., N. G. Thang, and N. T. Ngoc, "28/38 GHz dual-band MIMO antenna with low mutual coupling using novel round patch EBG cell for 5G applications," International Conference on Advanced Technologies for Communications, 64-69, 2017.

9. Li, J.-F. and Q.-X. Chu, "A compact dual-band MIMO antenna of mobile phone," Journal of Electromagnetic Waves and Applications, Vol. 25, 1577-1586, 2011.
doi:10.1163/156939311797164800

10. Amin, M. M., M. Mansor, N. Misran, and M. Islam, "28/38 GHz dual band slotted patch antenna with proximity-coupled feed for 5G communication," 2017 International Symposium on Antenna and Propagation (ISAP), 1-2, 2017.

11. Khattak, M. I., A. Sohail, U. Khan, Z. Barki, and G. Witjaksono, "Elliptical slot circular patch antenna array with dual band behavior for future 5G mobile communication networks," Progress In Electromagnetics Research C, Vol. 89, 133-147, 2019.
doi:10.2528/PIERC18101401

12. Haraz, O. M., M. M. M. Ali, S. Alshebeili, and A.-R. Sebak, "Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks," The 2015 IEEE AP-S Symposium on Antennas and Propagation and URSI CNC/USNC Joint Meeting, 1532-1533, 2015.

13. Grajek, P. R., B. Schoenlinner, and G. M. Rebeiz, "A 24-GHz high-gain Yagi-Uda antenna array," IEEE Trans. Antennas Propag., Vol. 52, 1257-1261, May 2004.
doi:10.1109/TAP.2004.827543

14. Ta, S. X., S.-G. Kang, J. J. Han, and I. Park, "High-efficiency, high-gain, broadband Quasi-Yagi antenna and its array for 60-GHz wireless communications ," Journal of Electromagnetic Engineering and Science, Vol. 13, No. 3, 178-185, SEP, 2013.
doi:10.5515/JKIEES.2013.13.3.178

15. Wu, X. Y. and P. S. Hall, "Substrate integrated waveguide Yagi-Uda antenna," Electronics Letters, Vol. 46, No. 23, 1541-1542, Nov. 2010.
doi:10.1049/el.2010.2558

16. Naeini, M. R. and M. Fakharzadeh, "A 28 GHz beam-switching Yagi-Uda array using rotman lens for 5G wireless communications," International Symposium on Antennas and Propagation & USNC/URSI National Radio Science, 2017.

17. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017.
doi:10.1109/LAWP.2017.2761903

18. Alhalabi, R. A. and G. M. Rebeiz, "High-gain Yagi-Uda antennas for millimeter-wave switched-beam systems," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3672-3676, Nov. 2009.
doi:10.1109/TAP.2009.2026666

19. Rafique Umair, K. H., "Dual-band microstrip patch antenna array for 5G mobile communications," 2017 Progress in Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 55-59, Singapore, Nov. 19-22, 2017.

20. Marzouk, H. M., M. I. Ahmed, and A.-E. H. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303