Vol. 102

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

High Permittivity Substrate and DGS Technique for Dual-Band Star-Shape Slotted Microstrip Patch Antenna Miniaturization

By Zhor Bendahmane, Souheyla Ferouani, and Choukria Sayah
Progress In Electromagnetics Research C, Vol. 102, 163-174, 2020


Three miniaturization techniques were combined in this work to achieve compact size while maintaining optimal performances of a dual-band star shape slotted Microstrip Patch Antenna (MPA) operating at 2.4 and 5 GHz resonant frequencies. High permittivity substrate and slot techniques were used for miniaturization and impedance matching improvement, while DGS technique was necessary for bandwidth enhancement and further miniaturization of the reference MPA. The miniaturized antenna shows a planar structure and occupies very small area of 15.55 x 19.80 mm2 achieving patch size area reduction of 71.24% and overall size reduction of 75.42%. Respectable positive gains were maintained with radiation efficiency exceeding 83% and 68% at 2.4 GHz and 5 GHz, respectively. The reference and miniaturized MPAs were fabricated, then their performances were measured and compared to the simulated ones. The measured impedance bandwidths of the miniaturized MPA were around 38% and 13% at the two resonant frequencies respectively, which confirm the originality and suitability of the miniaturized MPA for Wireless Local Area Network WLAN and ISM applications.


Zhor Bendahmane, Souheyla Ferouani, and Choukria Sayah, "High Permittivity Substrate and DGS Technique for Dual-Band Star-Shape Slotted Microstrip Patch Antenna Miniaturization," Progress In Electromagnetics Research C, Vol. 102, 163-174, 2020.


    1. Rothwell, E. J. and R. O. Ouedraogo, "Antenna miniaturization: Definitions, concepts, and a review with emphasis on metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 17, 2089-2123, Nov. 2014, doi: 10.1080/09205071.2014.972470.

    2. Fallahpour, M. and R. Zoughi, "Antenna miniaturization techniques: A review of topology- and material-based methods," IEEE Antennas Propag. Mag., Vol. 60, No. 1, 38-50, Feb. 2018, doi: 10.1109/MAP.2017.2774138.

    3. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1160-1162, Aug. 2002, doi: 10.1109/TAP.2002.801360.

    4. Kula, J., D. Psychoudakis, W.-J. Liao, C.-C. Chen, J. Volakis, and J. Halloran, "Patch-antenna miniaturization using recently available ceramic substrates," IEEE Antennas Propag. Mag., Vol. 48, No. 6, 13-20, Dec. 2006, doi: 10.1109/MAP.2006.323335.

    5. Ullah, M. H., M. T. Islam, and J. S. Mandeep, "A parametric study of high dielectric material substrate for small antenna design," Int. J. Appl. Electromagn. Mech., Vol. 41, No. 2, 193-198, Feb. 2013, doi: 10.3233/JAE-2012-1603.

    6. Liu, H., S. Ishikawa, A. An, S. Kurachi, and T. Yoshimasu, "Miniaturized microstrip meander-line antenna with very high-permittivity substrate for sensor applications," Microw. Opt. Technol. Lett., Vol. 49, No. 10, 2438-2440, Oct. 2007, doi: 10.1002/mop.22798.

    7. Takigawa, Y., S. Kashihara, and F. Kuroki, "Integrated slot spiral antenna etched on heavily-high permittivity piece," 2007 Asia-Pacific Microwave Conference, 1-4, Bangkok, Thailand, 2007, doi: 10.1109/APMC.2007.4554932.

    8. Bhadouria, A. S. and M. Kumar, "Microstrip patch antenna for radiolocation using DGS with improved gain and bandwidt," 2014 International Conference on Advances in Engineering & Technology Research (ICAETR --- 2014), 1-5, Unnao, India, 2014, doi: 10.1109/ICAETR.2014.7012873.

    9. Pasha, M. I., C. Kumar, and D. Guha, "Simultaneous compensation of microstrip feed and patch by defected ground structure for reduced cross-polarized radiation," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7348-7352, Dec. 2018, doi: 10.1109/TAP.2018.2869252.

    10. Kumar, C., M. I. Pasha, and D. Guha, "Microstrip patch with nonproximal symmetric defected ground structure (DGS) for improved cross-polarization properties over principal radiation planes," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1412-1414, 2015, doi: 10.1109/LAWP.2015.2406772.

    11. Rahman, M. M., M. S. Islam, H. Y. Wong, T. Alam, and M. T. Islam, "Performance analysis of a defected ground-structured antenna loaded with stub-slot for 5G communication," Sensors, Vol. 19, No. 11, 2634, Jun. 2019, doi: 10.3390/s19112634.

    12. Reddy, B. R. S. and D. Vakula, "Compact Zigzag-shaped-slit microstrip antenna with circular defected ground structure for wireless applications," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 678-681.

    13. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proc. IEEE, Vol. 100, No. 7, 2250-2261, Jul. 2012, doi: 10.1109/JPROC.2012.2188249.

    14. Su, H., H. Hu, B. Shu, B. Wang, W. Wang, and J. Wang, "Research of the SPiN diodes for silicon-based reconfigurable holographic antenna," Solid-State Electron., Vol. 146, 28-33, Aug. 2018, doi: 10.1016/j.sse.2018.05.001.

    15. Majid, H. A., M. K. A. Rahim, M. R. Hamid, M. F. Ismail, and F. Malek, "Frequency reconfigurable wide to narrow band monopole with slotted ground plane antenna," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1460-1469, Aug. 2012, doi: 10.1080/09205071.2012.702536.

    16. Salim, M. and A. Pourziad, "A novel reconfigurable spiral-shaped monopole antenna for biomedical applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015.

    17. Ferouani, S. S., Z. Z. Bendahmane, and A. A. T. Ahmed, "Design and analysis of dual band star shape slotted patch antenna," Microw. Rev., Vol. 23, No. 1, 5, 2017.

    18. Laheurte, J.-M. (ed.), Compact Antennas for Wireless Communications and Terminals: Theory and Design, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011.

    19. Salih, A. A. and M. S. Sharawi, "A dual-band highly miniaturized patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1783-1786, 2016, doi: 10.1109/LAWP.2016.2536678.

    20. Jafargholi, A., A. Jafargholi, and B. Ghalamkari, "Dual-band slim microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 6818-6825, Dec. 2018, doi: 10.1109/TAP.2018.2871964.

    21. Roy, S. and U. Chakraborty, "Metamaterial-embedded dual wideband microstrip antenna for 2.4GHz WLAN and 8.2 GHz ITU band applications," Waves Random Complex Media, 1-15, Jul. 2018, doi: 10.1080/17455030.2018.1494396.

    22. Anantha, B. and R. S. R. Gosula, "Compact single feed dual band microstrip patch antenna with adjustable dual circular polarization," IETE J. Res., 1-9, Apr. 2019, doi: 10.1080/03772063.2019.1598293.

    23. Patel, R. H. and T. K. Upadhyaya, "Compact planar dual band antenna for WLAN application," Progress In Electromagnetics Research Letters, Vol. 70, 89-97, 2017.

    24. Kukreja, J., D. Kumar Choudhary, and R. Kumar Chaudhary, "CPW fed miniaturized dual-band short-ended metamaterial antenna using modified split-ring resonator for wireless application," Int. J. RF Microw. Comput.-Aided Eng., Vol. 27, No. 8, e21123, Oct. 2017, doi: 10.1002/mmce.21123.

    25. Gupta, A. and R. K. Chaudhary, "The metamaterial antenna: A novel miniaturized dual-band coplanar waveguide-fed antenna with backed ground plane," IEEE Antennas Propag. Mag., Vol. 60, No. 4, 41-48, Aug. 2018, doi: 10.1109/MAP.2018.2839894.