Vol. 101

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-04-17

Optimization of a Rewritable Narrowband Filter in a SBN:75 Crystal

By Luis Alberto Rubio-Saavedra, Birger Seifert, Pedro A. Márquez Aguilar, and Adalberto Alejo-Molina
Progress In Electromagnetics Research C, Vol. 101, 81-93, 2020
doi:10.2528/PIERC20020501

Abstract

We propose a rewritable optical frequency filter based on a volume Bragg grating recorded by holography on an SBN:75 photorefractive crystal. The theoretical results show the possibility of implementing a narrow-band filter whose reflectance is total for the characteristic wavelength of the third harmonic of the infrared for both TE and TM polarizations by optimizing the size of the interference fringes and the angle of incidence of the beam to be filtered, which must be close to 80 degrees.

Citation


Luis Alberto Rubio-Saavedra, Birger Seifert, Pedro A. Márquez Aguilar, and Adalberto Alejo-Molina, "Optimization of a Rewritable Narrowband Filter in a SBN:75 Crystal," Progress In Electromagnetics Research C, Vol. 101, 81-93, 2020.
doi:10.2528/PIERC20020501
http://jpier.org/PIERC/pier.php?paper=20020501

References


    1. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge University Press, Cambridge, 1999.
    doi:10.1017/CBO9781139644181

    2. Paschotta, R., Article on “Bragg Mirrors” in the Encyclopedia of Laser Physics and Technology, 1st Ed., Wiley-VCH, 2008, ISBN 978-3-527-40828-3.

    3. Amotchkina, T. V., "Analytical estimations for the reference wavelength reflectance and width of high reflection zone of two-material periodic multilayers," Applied Optics, Vol. 52, No. 19, 4590-4595, 2013.
    doi:10.1364/AO.52.004590

    4. Hendrix, K. D., C. Hulse, G. J. Ockenfuss, and R. Sargent, "Demonstration of narrowband notch and multi-notch filters," Proc. SPIE7067, ID 706702, 2008.
    doi:10.1117/12.795498

    5. Hehl, K., et al., "High-efficiency dielectric reflection gratings: Design, fabrication, and analysis," Applied Optics, Vol. 38, No. 30, 6257-6271, 1999.
    doi:10.1364/AO.38.006257

    6. Berger, C., et al., "Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping," Journal of Crystal Growth, Vol. 440, 6-12, 2016.
    doi:10.1016/j.jcrysgro.2016.01.027

    7. Guo, C., M. Kong, D. Lin, and B. Li, "Fluoride coatings for vacuum ultraviolet reflection filters," Applied Optics, Vol. 54, No. 35, 10498-10503, 2015.
    doi:10.1364/AO.54.010498

    8. Leem, J. W., X. Guan, and J. S. Yu, "Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications," Optics Express, Vol. 22, No. 15, 18519-18526, 2014.
    doi:10.1364/OE.22.018519

    9. Zhang, J., Y. Xie, X. Cheng, H. Jiao, and Z. Wang, "Thin-film thickness-modulated designs for optical minus filter," Applied Optics, Vol. 52, No. 23, 5788-5793, 2013.
    doi:10.1364/AO.52.005788

    10. Wang, X., H. Masumoto, Y. Someno, L. Chen, and T. Hirai, "Stepwise graded refractive-index profiles for design of a narrow-bandpass filter," Applied Optics, Vol. 40, No. 22, 3746-3752, 2001.
    doi:10.1364/AO.40.003746

    11. De Vre, R. and L. Hesselink, "Diffraction analysis of layered structures of photorefractive gratings," Journal of Optical Society of America A, Vol. 13, No. 2, 285-295, 1996.
    doi:10.1364/JOSAA.13.000285

    12. Petrov, V. M., S. Lichtenberg, J. Petter, and T. Tschudi, "Control of the optical transfer function by phase-shift keying of a holographic Bragg grating," Optics Communications, Vol. 229, 131-139, 2004.
    doi:10.1016/j.optcom.2003.10.049

    13. Macleod, H. A., Thin-film Optical Filters, 3rd Ed., Institute of Physics Publishing, Bristol, 2001.
    doi:10.1201/9781420033236

    14. Muller, R., M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," Journal of Physics D: Applied Physic, Vol. 27, 241-246, 1994.
    doi:10.1088/0022-3727/27/2/010

    15. Muller, R., J. V. Alvarez-Bravo, L. Arizmendi, and J. M. Cabrera, "Tuning of photorefractive interference filters in LiNbO3," Journal of Physics D: Applied Physic, Vol. 27, 1628-1632, 1994.
    doi:10.1088/0022-3727/27/8/007

    16. Herve, D., M. Chauvet, J. E. Viallet, and M. J. Chawki, "First tunable narrowband 1.55 μm optical drop filter using a dynamic photorefractive grating in iron doped indium phosphide," Electronics Letters, Vol. 30, No. 22, 1883-1884, 1994.
    doi:10.1049/el:19941244

    17. Hukriede, J., D. Runde, and D. Kip, "Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides," Journal of Physics D: Applied Physics, Vol. 36, R1-R16, 2003.
    doi:10.1088/0022-3727/36/3/201

    18. Glebov, A. L., O. Mokhuna, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, "Volume Bragg gratings as ultra-narrow and multiband optical filters," Proc. of SPIE, Vol. 8428, ID 84280C, 2012.
    doi:10.1117/12.923575

    19. Sutherland, R. L., et al., "Liquid crystal Bragg gratings: Dynamic optical elements for spatial light modulators," Proc. of SPIE, Vol. 6487, ID 64870V, 2007.
    doi:10.1117/12.710829

    20. Thaxter, J. B., "Electrical control of holographic storage in Strontium-Barium Niobate," Applied Physics Letters, Vol. 15, No. 7, 210-212, 1969.
    doi:10.1063/1.1652971

    21. Thaxter, J. B. and M. Kestigian, "Unique properties of SBN and their use in a layered optical memory," Applied Optics, Vol. 13, No. 4, 913-924, 1974.
    doi:10.1364/AO.13.000913

    22. Voronov, V. V., et al., "Photoelectric and photorefractive properties of cerium-doped barium strontium niobate crystals," Soviet Journal of Quantum Electronics, Vol. 9, No. 9, 1172-1175, 1979.
    doi:10.1070/QE1979v009n09ABEH009478

    23. Ballman, A. A. and H. Brown, "The growth and properties of strontium barium metaniobate, Sr1−xBaxNb2O6, a tungsten bronze ferroelectric," Journal of Crystal Growth, Vol. 1, No. 5, 311-314, 1967.
    doi:10.1016/0022-0248(67)90038-3

    24. Neurgaonkar, R. R., W. K. Cory, J. R. Oliver, M. D. Ewbank, and W. F. Hall, "Development and modification of photorefractive properties in the tungsten bronze family crystals," Optical Engineering, Vol. 26, No. 5, 392-405, 1987.
    doi:10.1117/12.7974088

    25. Dorosh, I. R., et al., "Barium-strontium niobate crystals for optical information recording," Physica Status Solidi (A), Vol. 65, No. 2, 513-522, 1981.
    doi:10.1002/pssa.2210650214

    26. Thaxter, J. B. and M. Kestigian, "Unique properties of SBN and their use in a layered optical memory," Applied Optics, Vol. 13, No. 4, 913-924, 1974.
    doi:10.1364/AO.13.000913

    27. Golmohammadi, S. and A. Rostami, "Optical filters using optical multi-layer structures for optical communication systems," Fiber Integrated Optics, Vol. 29, No. 3, 209-224, 2010.
    doi:10.1080/01468030.2010.485294

    28. Smirnov, V., J. Lumeau, S. Mokhov, B. Y. Zeldovich, and L. B. Glebov, "Ultranarrow bandwidth moire reflecting Bragg gratings recorded in photo-thermo-refractive glass," Optics Letters, Vol. 35, No. 4, 592-594, 2010.
    doi:10.1364/OL.35.000592

    29. Yeh, P., A. Yariv, and C.-S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., Vol. 67, No. 4, 423-438, 1977.
    doi:10.1364/JOSA.67.000423

    30. Popov, K. V., J. A. Dobrowolski, A. V. Tikhonravov, and B. T. Sullivan, "Broadband high-reflection multilayer coatings at oblique angles of incidence," Applied Optics, Vol. 36, No. 10, 2139-2151, 1997.
    doi:10.1364/AO.36.002139

    31. Eriksson, F., G. A. Johansson, H. M. Hertz, E. M. Gullikson, U. Kreissig, and J. Birch, "14.5% near-normal incidence reflectance of Cr/Sc x-ray multilayer mirrors for the water window," Optics Letters, Vol. 28, No. 24, 2494-2496, 2003.
    doi:10.1364/OL.28.002494

    32. Boyd, R. W., "Nonlinear Optics," Academic Press, 2003.

    33. Petrov, M. P., S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer-Verlag, Berlin, 1991.
    doi:10.1007/978-3-540-47056-4

    34. Eichler, H. J. and A. Hermerschmidt, "Light-induced dynamic gratings and photorefraction," Photorefractive Materials and Their Applications 1, Basic Effects, 7-28, P. Gunter and J.-P. Huignard, Eds., Springer, New York, 2006.

    35. Frejlich, J., Photorefractive Materials, Fundamental Concepts, Holographic Recording and Materials Characterization, Wiley-Interscience, Hoboken, 2007.

    36. Yariv, A. and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York, 2007.

    37. Denz, C., M. Schwab, and C. Weilnau, Transverse-Pattern Formation in Photorefractive Optics, Springer-Verlag, Berlin, 2003.
    doi:10.1007/b13583

    38. Saleh, B. E. A. and M. C. Teich, Fundamental of Photonics, 2nd Ed., Wiley-Interscience, Hoboken, 2007.

    39. Kashyap, R., Fiber Bragg Gratings, 2nd Ed., Academic Press, San Diego, 2010.

    40. Tovar, A. A. and L. W. Casperson, "Generalized Sylvester theorems for periodic applications in matrix optics," J. Opt. Soc. Am. A, Vol. 12, No. 3, 578-590, 1995.
    doi:10.1364/JOSAA.12.000578

    41. Kogelnik, H., "Coupled wave theory for thick Hologram Gratings," The Bell System Technical Journal, Vol. 48, No. 9, 2909-2947, 1969.
    doi:10.1002/j.1538-7305.1969.tb01198.x