Vol. 101

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Optimization of a Rewritable Narrowband Filter in a SBN:75 Crystal

By Luis Alberto Rubio-Saavedra, Birger Seifert, Pedro A. Márquez Aguilar, and Adalberto Alejo-Molina
Progress In Electromagnetics Research C, Vol. 101, 81-93, 2020


We propose a rewritable optical frequency filter based on a volume Bragg grating recorded by holography on an SBN:75 photorefractive crystal. The theoretical results show the possibility of implementing a narrow-band filter whose reflectance is total for the characteristic wavelength of the third harmonic of the infrared for both TE and TM polarizations by optimizing the size of the interference fringes and the angle of incidence of the beam to be filtered, which must be close to 80 degrees.


Luis Alberto Rubio-Saavedra, Birger Seifert, Pedro A. Márquez Aguilar, and Adalberto Alejo-Molina, "Optimization of a Rewritable Narrowband Filter in a SBN:75 Crystal," Progress In Electromagnetics Research C, Vol. 101, 81-93, 2020.


    1. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge University Press, Cambridge, 1999.

    2. Paschotta, R., Article on “Bragg Mirrors” in the Encyclopedia of Laser Physics and Technology, 1st Ed., Wiley-VCH, 2008, ISBN 978-3-527-40828-3.

    3. Amotchkina, T. V., "Analytical estimations for the reference wavelength reflectance and width of high reflection zone of two-material periodic multilayers," Applied Optics, Vol. 52, No. 19, 4590-4595, 2013.

    4. Hendrix, K. D., C. Hulse, G. J. Ockenfuss, and R. Sargent, "Demonstration of narrowband notch and multi-notch filters," Proc. SPIE7067, ID 706702, 2008.

    5. Hehl, K., et al., "High-efficiency dielectric reflection gratings: Design, fabrication, and analysis," Applied Optics, Vol. 38, No. 30, 6257-6271, 1999.

    6. Berger, C., et al., "Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping," Journal of Crystal Growth, Vol. 440, 6-12, 2016.

    7. Guo, C., M. Kong, D. Lin, and B. Li, "Fluoride coatings for vacuum ultraviolet reflection filters," Applied Optics, Vol. 54, No. 35, 10498-10503, 2015.

    8. Leem, J. W., X. Guan, and J. S. Yu, "Tunable distributed Bragg reflectors with wide-angle and broadband high-reflectivity using nanoporous/dense titanium dioxide film stacks for visible wavelength applications," Optics Express, Vol. 22, No. 15, 18519-18526, 2014.

    9. Zhang, J., Y. Xie, X. Cheng, H. Jiao, and Z. Wang, "Thin-film thickness-modulated designs for optical minus filter," Applied Optics, Vol. 52, No. 23, 5788-5793, 2013.

    10. Wang, X., H. Masumoto, Y. Someno, L. Chen, and T. Hirai, "Stepwise graded refractive-index profiles for design of a narrow-bandpass filter," Applied Optics, Vol. 40, No. 22, 3746-3752, 2001.

    11. De Vre, R. and L. Hesselink, "Diffraction analysis of layered structures of photorefractive gratings," Journal of Optical Society of America A, Vol. 13, No. 2, 285-295, 1996.

    12. Petrov, V. M., S. Lichtenberg, J. Petter, and T. Tschudi, "Control of the optical transfer function by phase-shift keying of a holographic Bragg grating," Optics Communications, Vol. 229, 131-139, 2004.

    13. Macleod, H. A., Thin-film Optical Filters, 3rd Ed., Institute of Physics Publishing, Bristol, 2001.

    14. Muller, R., M. T. Santos, L. Arizmendi, and J. M. Cabrera, "A narrow-band interference filter with photorefractive LiNbO3," Journal of Physics D: Applied Physic, Vol. 27, 241-246, 1994.

    15. Muller, R., J. V. Alvarez-Bravo, L. Arizmendi, and J. M. Cabrera, "Tuning of photorefractive interference filters in LiNbO3," Journal of Physics D: Applied Physic, Vol. 27, 1628-1632, 1994.

    16. Herve, D., M. Chauvet, J. E. Viallet, and M. J. Chawki, "First tunable narrowband 1.55 μm optical drop filter using a dynamic photorefractive grating in iron doped indium phosphide," Electronics Letters, Vol. 30, No. 22, 1883-1884, 1994.

    17. Hukriede, J., D. Runde, and D. Kip, "Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides," Journal of Physics D: Applied Physics, Vol. 36, R1-R16, 2003.

    18. Glebov, A. L., O. Mokhuna, A. Rapaport, S. Vergnole, V. Smirnov, and L. B. Glebov, "Volume Bragg gratings as ultra-narrow and multiband optical filters," Proc. of SPIE, Vol. 8428, ID 84280C, 2012.

    19. Sutherland, R. L., et al., "Liquid crystal Bragg gratings: Dynamic optical elements for spatial light modulators," Proc. of SPIE, Vol. 6487, ID 64870V, 2007.

    20. Thaxter, J. B., "Electrical control of holographic storage in Strontium-Barium Niobate," Applied Physics Letters, Vol. 15, No. 7, 210-212, 1969.

    21. Thaxter, J. B. and M. Kestigian, "Unique properties of SBN and their use in a layered optical memory," Applied Optics, Vol. 13, No. 4, 913-924, 1974.

    22. Voronov, V. V., et al., "Photoelectric and photorefractive properties of cerium-doped barium strontium niobate crystals," Soviet Journal of Quantum Electronics, Vol. 9, No. 9, 1172-1175, 1979.

    23. Ballman, A. A. and H. Brown, "The growth and properties of strontium barium metaniobate, Sr1−xBaxNb2O6, a tungsten bronze ferroelectric," Journal of Crystal Growth, Vol. 1, No. 5, 311-314, 1967.

    24. Neurgaonkar, R. R., W. K. Cory, J. R. Oliver, M. D. Ewbank, and W. F. Hall, "Development and modification of photorefractive properties in the tungsten bronze family crystals," Optical Engineering, Vol. 26, No. 5, 392-405, 1987.

    25. Dorosh, I. R., et al., "Barium-strontium niobate crystals for optical information recording," Physica Status Solidi (A), Vol. 65, No. 2, 513-522, 1981.

    26. Thaxter, J. B. and M. Kestigian, "Unique properties of SBN and their use in a layered optical memory," Applied Optics, Vol. 13, No. 4, 913-924, 1974.

    27. Golmohammadi, S. and A. Rostami, "Optical filters using optical multi-layer structures for optical communication systems," Fiber Integrated Optics, Vol. 29, No. 3, 209-224, 2010.

    28. Smirnov, V., J. Lumeau, S. Mokhov, B. Y. Zeldovich, and L. B. Glebov, "Ultranarrow bandwidth moire reflecting Bragg gratings recorded in photo-thermo-refractive glass," Optics Letters, Vol. 35, No. 4, 592-594, 2010.

    29. Yeh, P., A. Yariv, and C.-S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am., Vol. 67, No. 4, 423-438, 1977.

    30. Popov, K. V., J. A. Dobrowolski, A. V. Tikhonravov, and B. T. Sullivan, "Broadband high-reflection multilayer coatings at oblique angles of incidence," Applied Optics, Vol. 36, No. 10, 2139-2151, 1997.

    31. Eriksson, F., G. A. Johansson, H. M. Hertz, E. M. Gullikson, U. Kreissig, and J. Birch, "14.5% near-normal incidence reflectance of Cr/Sc x-ray multilayer mirrors for the water window," Optics Letters, Vol. 28, No. 24, 2494-2496, 2003.

    32. Boyd, R. W., "Nonlinear Optics," Academic Press, 2003.

    33. Petrov, M. P., S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer-Verlag, Berlin, 1991.

    34. Eichler, H. J. and A. Hermerschmidt, "Light-induced dynamic gratings and photorefraction," Photorefractive Materials and Their Applications 1, Basic Effects, 7-28, P. Gunter and J.-P. Huignard, Eds., Springer, New York, 2006.

    35. Frejlich, J., Photorefractive Materials, Fundamental Concepts, Holographic Recording and Materials Characterization, Wiley-Interscience, Hoboken, 2007.

    36. Yariv, A. and P. Yeh, Photonics: Optical Electronics in Modern Communications, Oxford University Press, New York, 2007.

    37. Denz, C., M. Schwab, and C. Weilnau, Transverse-Pattern Formation in Photorefractive Optics, Springer-Verlag, Berlin, 2003.

    38. Saleh, B. E. A. and M. C. Teich, Fundamental of Photonics, 2nd Ed., Wiley-Interscience, Hoboken, 2007.

    39. Kashyap, R., Fiber Bragg Gratings, 2nd Ed., Academic Press, San Diego, 2010.

    40. Tovar, A. A. and L. W. Casperson, "Generalized Sylvester theorems for periodic applications in matrix optics," J. Opt. Soc. Am. A, Vol. 12, No. 3, 578-590, 1995.

    41. Kogelnik, H., "Coupled wave theory for thick Hologram Gratings," The Bell System Technical Journal, Vol. 48, No. 9, 2909-2947, 1969.