Vol. 101
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-22
Inset-Feed Frequency Reconfigurable Compact E-Shape Patch with DGS
By
Progress In Electromagnetics Research C, Vol. 101, 119-132, 2020
Abstract
In this paper, a new miniaturized switchable band microstrip patch antenna array using PIN-diode is presented for WLAN/WiMax applications. In the first stage DGS has been employed to miniaturize a dual band microstrip patch antenna array simultaneously resonating at 2.2 GHz and 3.8 GHz. Further in second stage RF PIN-diodes has been used to achieve the frequency reconfigurability to serve for different communication systems. The designs are verified through both simulation and measurement of fabricated prototype. The measured results were in good agreement with simulated results.
Citation
Rashmi A. Pandhare, and Mahesh Pandurang Abegaonkar, "Inset-Feed Frequency Reconfigurable Compact E-Shape Patch with DGS," Progress In Electromagnetics Research C, Vol. 101, 119-132, 2020.
doi:10.2528/PIERC20011701
References

1. Tirado-Mendez, J. A., M. A. Peyrot-Solis, H. Jardon-Aguilar, E. A. Andrade-Gonzalez, and M. Reyes-Ayala, "Applications of novel Defected Microstrip Structure (DMS) in planar passive circuits," Proceedings of the 10th WSEAS International Conference on CIRCUITS, 336-369, Vouliagmeni, Athens, Greece, Jul. 10–12, 2006.

2. Hanae, E., N. Amar Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302

3. Arya, A. K., M. V. Kartikeyan, and A. Patnaik, "Efficiency enhancement of microstrip patch antennas with defected ground structure," Proc. IEEE Recent Advanced in Microwave Theory and Applications (MICROWAVE-08), 729-731, Nov. 2008.

4. Zulkifli, F. Y., E. T. Rahardjo, and D. Hartanto, "Mutual coupling reduction using dumbbell defected ground structure for multiband microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 13, 29-40, 2010.
doi:10.2528/PIERL09102902

5. Fan, M., R. Hu, Z. H. Feng, X. X. Zhang, and Q. Hao, "Advance in 2D-EBG structures research," The Journal of Infrared and Millimeter Waves, Vol. 22, No. 2, 2003.

6. Arya, A. K., A. Patnaik, and M. V. Kartikeyan, "Microstrip patch antenna with skew-F shaped DGS for dual band operation," Progress In Electromagnetics Research M, Vol. 19, 147-160, 2011.
doi:10.2528/PIERM11052305

7. Kapoor, S. and D. Parkash, "Miniaturized triple band microstrip patch antenna with defected ground structure for wireless communication applications," International Journal of Computer Applications, Vol. 57, No. 7, Nov. 2012, ISSN: 0975-8887.

8. Maci, S., B. B. Gentili, P. Piazzesi, and C. Salvador, "Dual band slot-loaded patch antenna," IEEE Antennas Propag. Mag., Vol. 39, No. 6, 13-20, Dec. 1997.
doi:10.1109/74.646798

9. Hsieh, K. B. and K. Wong, "Inset microstrip-line-fed dual-frequency circular microstrip antenna and its application to a two-element dual-frequency microstrip array," Inst. Elect. Eng. Microw. Antennas Propag. Symp. Digest, Vol. 147, 359-361, Oct. 1999.

10. Fang, S. T. and K. L. Wong, "A dual frequency equilateral triangular microstrip antenna with a pair of two narrow slots," Microw. Opt. Technol. Lett., Vol. 23, 82-84, Oct. 1999.

11. Morioka, T., S. Araki, and K. Hirasawa, "Slot antenna with parasitic element for dual band operation," IET Electron. Lett., Vol. 33, 2093-2094, Dec. 1997.
doi:10.1049/el:19971373

12. Costantine, J., Y. Tawk, S. E. Barbin, and C. G. Christodoulou, "Reconfigurable antennas: Design and applications," Proceedings of the IEEE, Vol. 103, No. 3, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000

13. Lim, J.-H., G.-T. Back, Y.-I. Ko, C.-W. Song, and T.-Y. Yun, "A reconfigurable PIFA using a switchable PIN-diode and a fine-tuning varactor for USPCS/WCDMA/m-WiMAX/WLAN," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2404-2411, Jul. 2010.

14. Onat, S., L. Alatan, and S. Demir, "Design of triple-band reconfigurable microstrip antenna employing RF-MEMS switches," APS International Symposium, Vol. 2, 1812-1815, IEEE, Jun. 20–25, 2004.

15. Onat, S., L. Alatan, S. Demir, M. Unlu, and T. Akin, "Design of a re-configurable dual frequency microstrip antenna with integrated RF MEMS switches," APS International Symposium, Vol. 2A, 384-387, IEEE, Jul. 3–8, 2005.

16. Weedon, W. H., W. J. Payne, and G. M. Rebeiz, "MEMS-switched reconfigurable antennas," APS International Symposium, Vol. 3, 654-657, IEEE, Jul. 8–13, 2001.

17. Cetiner, B. A., H. Jafarkhani, J.-Y. Qian, H. J. Yoo, A. Grau, and F. De Flaviis, "Multifunctional reconfigurable MEMS integrated antennas for adaptive MIMO systems," Communications Magazine, Vol. 42, No. 12, 62-70, IEEE, Dec. 2004.
doi:10.1109/MCOM.2004.1367557

18. Lee, A. W. M., S. K. Kagan, M. Wong, R. S. Singh, and E. R. Brown, "Measurement and FEM modeling of a reconfigurable-patch antenna for use in the wideband gap filler satellite system," APS Symposium, Vol. 1, 379-382, IEEE, Jun. 22–27, 2003.

19. Liu, S., M. Lee, C. Jung, G. P. Li, and F. Flaviis, "A frequency-reconfigurable circularly polarized patch antenna by integrating mems switches," APS International Symposium, Vol. 2A, IEEE, 2005.

20. Yang, F. and Y. Rahmat Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, USA, 2009.

21. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965