Vol. 100

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-02-19

Logarithmic Similarity Measure Based Cooperative Spectrum Sensing Under Impulsive Noise

By Wenkai Zhang, Changqing Zhang, Gang An, and Jin Li
Progress In Electromagnetics Research C, Vol. 100, 45-57, 2020
doi:10.2528/PIERC19112301

Abstract

Spectrum sensing is one of the key functionalities in cognitive radios which enables opportunistic spectrum access. In this paper, a cooperative spectrum sensing (CSS) algorithm is developed to alleviate the problems of hidden terminals under impulsive noise environments. Firstly, the logarithmic similarity measure detector (LSMD) is constructed to solve the problem of outliers caused by impulsive noise. On the one hand, LSMD contains no free parameters, which is easy to implement. On the other hand, logarithmic similarity measure (LSM) converts logarithmic operations into multiplication operations, and then the computational cost can be greatly reduced. Moreover, original data fusion strategy is designed to reduce the amount of computation of CSS, while the accuracy of CSS is noticeably improved compared with the ``OR'' rule CSS. Besides, the solution of the unknown parameter of LSMD is directly given by theoretical analysis, and then the CSS exhibits higher efficiency. Simulation results show that the proposed method achieves much higher detection probability than the existing techniques under various scenarios.

Citation


Wenkai Zhang, Changqing Zhang, Gang An, and Jin Li, "Logarithmic Similarity Measure Based Cooperative Spectrum Sensing Under Impulsive Noise," Progress In Electromagnetics Research C, Vol. 100, 45-57, 2020.
doi:10.2528/PIERC19112301
http://jpier.org/PIERC/pier.php?paper=19112301

References


    1. Murtaza, N., R.-K. Sharma, R. S. Thoma, and M. A. Hein, "Directional antennas for cognitive radio: Analysis and design recommendations," Progress In Electromagnetics Research, Vol. 140, 1-30, 2013.
    doi:10.2528/PIER13031107

    2. Song, H., X. Fang, L. Yan, and Y. Fang, "Control/user plane decoupled architecture utilizing unlicensed bands in LTE systems," IEEE Trans. on Communications, Vol. 66, No. 1, 407-417, Jan. 2018.

    3. Mariani, A., A. Giorgetti, and M. Chiani, "Effects of noise power estimation on energy detection for cognitive radio applications," IEEE Trans. on Communications, Vol. 59, No. 12, 3410-3420, Dec. 2011.
    doi:10.1109/TCOMM.2011.102011.100708

    4. Erdogmus, D., R. Agrawal, and J. C. Principe, "A mutual information extension to the matched filter," Signal Proc., Vol. 85, No. 5, 927-935, May 2005.
    doi:10.1016/j.sigpro.2004.11.018

    5. Orimoto, H. and A. Ikuta, "Signal processing for noise cancellation in actual electromagnetic environment," Progress In Electromagnetics Research, Vol. 99, 307-322, 2009.
    doi:10.2528/PIER09100907

    6. Liu, T., T. Qiu, and S. Luan, "Cyclic frequency estimation by compressed cyclic correntropy spectrum in impulsive noise," IEEE Signal Processing Letters, Vol. 26, No. 6, 888-892, 2019.
    doi:10.1109/LSP.2019.2910928

    7. Ma, J. and Y. Li, "Soft combination and detection for cooperative spectrum sensing in cognitive radio networks," Global Telecommun. Conf., GLOBECOM'07, 3139-3143, IEEE, Nov. 2007.

    8. Margoosian, A., J. Abouei, and K. N. Plataniotis, "An accurate kernelized energy detection in gaussian and non-gaussian/impulsive noises," IEEE Transactions on Signal Processing, Vol. 63, No. 21, 5621-5636, 2015.
    doi:10.1109/TSP.2015.2457400

    9. Pokharel, P. P., R. Agrawal, and J. C. Principe, "Correntropy based matched filtering," Proc. IEEE Workshop Mach. Learning for Signal Proc., 341-346, Sep. 2005.

    10. Lee, J. and J. C. Principe, "Correntropy-based spectrum sensing for wireless microphones in man-made noise environments," Proc. Int. Workshop on CIP, 1-6, May 2012.

    11. Silverman, B., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986.
    doi:10.1007/978-1-4899-3324-9

    12. Akyildiz, I., W. Lee, M. Vuran, and S. Mohanty, "Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey," Computer Netw., Vol. 50, No. 13, 2127-2159, Sep. 2006.
    doi:10.1016/j.comnet.2006.05.001

    13. Maleki, S., S. P. Chepuri, and G. Leus, "Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks," Phys. Commun., Vol. 9, 193-198, Dec. 2013.
    doi:10.1016/j.phycom.2012.07.003

    14. Ghorbel, M. B., H. Nam, and M. S. Alouini, "Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels," IEEE Communications Letters, Vol. 19, No. 2, 227-230, 2015.
    doi:10.1109/LCOMM.2014.2377231

    15. Li, S., T. Qiu, and D. Zha, "Adaptive blind equalization for MIMO systems under α-stable noise environment," IEEE Communications Letters, Vol. 13, No. 8, 609-611, Aug. 2009.
    doi:10.1109/LCOMM.2009.081982

    16. Patel, A. and A. K. Jagannatham, "Non-antipodal signaling based robust detection for cooperative spectrum sensing in MIMO cognitive radio networks," IEEE Signal Processing Letters, Vol. 20, No. 7, 661-664, 2013.
    doi:10.1109/LSP.2013.2261985

    17. Schouten, T. E. and L. Van, "Fast exact euclidean distance (FEED): A new class of adaptable distance transforms," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 36, No. 11, 2159-2172, 2014.
    doi:10.1109/TPAMI.2014.25

    18. Margoosian, A., J. Abouei, and K. N. Plataniotis, "An accurate kernelized energy detection in gaussian and non-gaussian/impulsive noises," IEEE Transactions on Signal Processing, Vol. 63, No. 21, 5621-5636, 2015.
    doi:10.1109/TSP.2015.2457400

    19. Ji, Z. and H. Zhang, "Kernel recursive generalized maximum correntropy," IEEE Signal Processing Letters, Vol. 24, No. 12, 1832-1836, 2017.
    doi:10.1109/LSP.2017.2761886

    20. Hinton, G. E. and S. J. Nowlan, "The bootstrap Widrow-Hoff rule as a cluster-formation algorithm," Neural Comput., Vol. 2, No. 3, 355-362, 1990.
    doi:10.1162/neco.1990.2.3.355

    21. Serfling, R. J., Approximation Theorems of Mathematical Statistics, Wiley, 1980.
    doi:10.1002/9780470316481

    22. Mariani, A., A. Giorgetti, and M. Chiani, "Effects of noise power estimation on energy detection for cognitive radio applications," IEEE Trans. on Communications, Vol. 59, No. 12, 3410-3420, Dec. 2011.
    doi:10.1109/TCOMM.2011.102011.100708

    23. Cordeiro, C., K. Challapali, and D. Birru, "IEEE 802.22: An introduction to the first wireless standard based on cognitive radios," J. Commun., Vol. 1, No. 1, 38-47, Apr. 2006.
    doi:10.4304/jcm.1.1.38-47

    24. Liu, M., N. Zhao, J. Li, and V. Leung, "Spectrum sensing based on maximum generalized correntropy under symmetric alpha stable noise," IEEE Transactions on Vehicular Technology, Vol. 68, No. 10, 10262-10266, 2019, doi: 10.1109/TVT.2019.2931949.
    doi:10.1109/TVT.2019.2931949