Vol. 98

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-12-31

ANN and FA Based Design of Hybrid Fractal Antenna for ISM Band Applications

By Manpreet Kaur and Jagtar Singh Sivia
Progress In Electromagnetics Research C, Vol. 98, 127-140, 2020
doi:10.2528/PIERC19110901

Abstract

In this paper, a compact Giuseppe Peano, Cantor Set and Sierpinski Carpet fractals based hybrid fractal Antenna (GCSA) is designed and developed for Industrial, Scientific and Medical (ISM) band applications. The proposed GCSA is a hybrid fractal design which is created by fusing Giuseppe Peano, Cantor set and Sierpinski carpet fractals together. The optimization of the microstrip line feed position is performed by using a Firefly Algorithm (FA). The substrate material employed for proposed GCSA is a low-priced, easily available FR4 epoxy of thickness 1.6 mm. By varying the geometrical dimensions of the radiating patch, a data set of 58 GCSAs is randomly generated for the realization of Artificial Neural Network (ANN) and FA approaches. The designed structure is fabricated and then measured results are evaluated. The proposed GCSA is capable of resonating at 2.4450 GHz with S(1,1) < -10 dB. The measured bandwidth of the operating ISM band is 101 MHz. The quantitative performance of three different ANN types reveals that Feed Forward Back Propagation ANN (FFBPN) shows minimum error in comparison to other two ANN types. The simulated, experimental and optimized results show a good match that specifies the preciseness of the measurement.

Citation


Manpreet Kaur and Jagtar Singh Sivia, "ANN and FA Based Design of Hybrid Fractal Antenna for ISM Band Applications," Progress In Electromagnetics Research C, Vol. 98, 127-140, 2020.
doi:10.2528/PIERC19110901
http://jpier.org/PIERC/pier.php?paper=19110901

References


    1. Lin, W. and H. Wang, "Polarization reconfigurable circular patch antenna with multiple l-probes for biomedical applications," IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 2016, ISSN: 1947-1491.

    2. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Communications, ArtechHouse, London and Boston, 2006.
    doi:10.1109/EUCAP.2006.4584864

    3. Kaur, G., A. Kaur, G. K. Toor, B. S. Dhaliwal, and S. S. Pattnaik, "Antennas for biomedical applications," Biomedical Engineering Letters, Vol. 5, No. 3, 203-212, Sept. 2015.
    doi:10.1007/s13534-015-0193-z

    4. Sabban, A., "New wideband printed antennas for medical applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 84-91, Jan. 2013.
    doi:10.1109/TAP.2012.2214993

    5. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

    6. Ali, J. K., M. T. Yassen, M. R. Hussan, and A. J. Salim, "A printed fractal based slot antenna for multiband wireless communication applications," Proceedings of PIERS, 618-622, Moscow, Russia, Aug. 19-23, 2012.

    7. Oraizi, H. and S. Hedayati, "Circularly polarized multiband microstrip antenna using square and giuseppe peano fractals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3466-3470, Jul. 2012.
    doi:10.1109/TAP.2012.2196912

    8. Sundaram, A., M. Maddela, and R. Ramadoss, "Koch-Fractal folded-slot antenna characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 219-222, Apr. 2007.
    doi:10.1109/LAWP.2007.895293

    9. Oraizi, H. and S. Hedayati, "Combined fractal geometries for the design of wide band microstrip antennas with circular polarization," PIERS Proceedings, 1262-1267, Suzhou, China, Sept. 12-16, 2011.

    10. Sharma, N., V. Sharma, and S. S. Bhatia, "A novel hybrid fractal antenna for wireless applications," Progress In Electromagnetics Research M, Vol. 73, 25-35, 2018.

    11. Dhaliwal, B. S. and S. S. Pattnaik, "BFO-ANN ensemble hybrid algorithm to design compact fractal antenna for rectenna system," International Journal on Neural Computing and Applications, Vol. 28, No. 1, 917-928, Dec. 2017.
    doi:10.1007/s00521-016-2402-9

    12. Singh, S. and B. S. Dhaliwal, "Analysis of hybrid fractal antenna using artificial neural network," International Conference on Soft Computing in Wireless Communication (SCAWC 2017), 219-222, Mar. 9-11, 2017.

    13. Kaur, K. and J. S. Sivia, "“A compact hybrid multiband antenna for wireless applications," International Journal on Wireless Personal Communications, Vol. 97, No. 4, 5917-5927, Dec. 2017.
    doi:10.1007/s11277-017-4818-7

    14. Sharma, N. and S. S. Bhatia, "Split ring resonator based multiband hybrid fractal antennas for wireless applications," International Journal of Electronics and Communications, Vol. 93, 39-52, Sept. 2018.
    doi:10.1016/j.aeue.2018.05.035

    15. Bangi, I. K. and J. S. Sivia, "Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications," International Journal of Electronics and Communications, Vol. 85, 159-168, Feb. 2018.
    doi:10.1016/j.aeue.2018.01.005

    16. Brar, A. S., J. S. Sivia, and G. Bharti, "A compact hybrid Minkowski fractal antenna for C and X-band applications," International Journal of Computer Science and Information Security (IJCSIS), Vol. 14, No. 12, 349-352, Dec. 2016.

    17. Saputro, S. A. and J. Y. Chung, "Hilbert curve fractal antenna for dual on- and off-body communication," Progress In Electromagnetics Research Letters, Vol. 58, 81-88, 2016.
    doi:10.2528/PIERL15111107

    18. Choukiker, Y. K. and S. K. Behera, "Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics," IET Microwaves, Antennas & Propagation, Vol. 8, No. 7, 506-512, May 2014.
    doi:10.1049/iet-map.2013.0235

    19. Li, Y., X. Yang, C. Liu, and T. Jiang, "Miniaturization cantor set fractal ultrawideband antenna with a notch band characteristic," Microwave and Optical Technology Letters, Vol. 54, No. 5, 1227-1230, Mar. 2017.
    doi:10.1002/mop.26762

    20. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Analysis and design of circular fractal antenna using artificial neural networks," Progress In Electromagnetics Research B, Vol. 56, 251-267, 2013.
    doi:10.2528/PIERB13091611

    21. Salim, M. and A. Pourziad, "A novel reconfigurable spiral-shaped monopole antenna for biomedical applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015.
    doi:10.2528/PIERL15083103

    22. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giuseppe Peano and Sierpinski Carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, Jan. 201.

    23. Choukiker, Y. K. and S. K. Behera, "Design of wideband fractal antenna with combination of fractal geometries," International Conference on Information, Communications and Signal Processing, Singapore, Dec. 13-16, 2011.

    24. Oraizi, H. and S. Hedayati, "Circularly polarized multiband microstrip antenna using square and Giuseppe Peano fractals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3466-3470, Jul. 201.
    doi:10.1109/TAP.2012.2196912

    25. Sukhija, S. and R. K. Sarin, "A U-shaped meandered slot antenna for biomedical applications," Progress In Electromagnetics Research M, Vol. 62, 65-77, 2017.
    doi:10.2528/PIERM17082101

    26. Kaur, M. and J. S. Sivia, "ANN-based design of hybrid fractal antenna for biomedical applications," International Journal of Electronics, Vol. 106, No. 8, 1184-1199, Mar. 2019.
    doi:10.1080/00207217.2019.1582712

    27. Sivia, J. S., A. P. S. Pharwaha, and T. S. Kamal, "Neurocomputational models for parameter estimation of circular microstrip patch antennas," Procedia Computer Science, Vol. 85, 393-400, Dec. 2016.
    doi:10.1016/j.procs.2016.05.178

    28. Feiz, N., F. Mohajeri, and D. Zarifi, "Design, simulation and fabrication of an optimized microstrip antenna with metamaterial superstrate using particle swarm optimization ," Progress In Electromagnetics Research M, Vol. 36, 101-108, May 2014.
    doi:10.2528/PIERM14010202

    29. Zaman, M. A. and M. A. Matin, "Nonuniformly spaced linear antenna array design using firefly algorithm," International Journal of Microwave Science and Technology, Vol. 2012, 1-8, Jan. 2012.
    doi:10.1155/2012/256759

    30. Mohammed, H. J., A. S. Abdullah, R. S. Ali, R. A. Abd-Alhameed, Y. I. Abdulraheem, and J. M. Noras, "Design of a unipolar printed triple band-rejected ultra-wideband antenna using particle swarm optimization and the firefly algorithm," IET Microwaves, Antennas & Propagation, Vol. 10, No. 1, 31-37, 2014.
    doi:10.1049/iet-map.2014.0736

    31. Dhaliwal, B. S. and S. S. Pattnaik, "Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design," Neural Computing and Applications, Vol. 27, No. 3, 585-592, Apr. 2016.
    doi:10.1007/s00521-015-1879-y

    32. Kaur, R. and M. Rattan, "Optimization of the return loss of differentially fed microstrip patch antenna using ANN and firefly algorithm," Wireless Personal Communications, Vol. 80, No. 4, 1547-1556, Feb. 2015.
    doi:10.1007/s11277-014-2099-y

    33. Bhushan, B. and S. S. Pillai, "Particle swarm optimization and firefly algorithm: Performance analysis," IEEE International Advances Computing Conference (IACC), 746-751, Feb. 22-23, 2013.

    34. Kaur, M. and J. S. Sivia, "Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO," International Journal of Electronics and Communications, Vol. 99, 14-24, Feb. 2019.
    doi:10.1016/j.aeue.2018.11.005

    35. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, London.

    36. Dhaliwal, B. S. and S. S. Pattnaik, "Artificial neural network analysis of Sierpinski Gasket fractal antenna: A low-cost alternative to experimentation," Advances in Artificial Neural Systems, Vol. 2013, Article ID 560969, 7 pages, Jan. 2013.

    37. Gil, I. and R. Fernandez-Garcia, "Wearable PIFA antenna implemented on jean substrate for wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 11-12, 1194-1204, 2017.
    doi:10.1080/09205071.2017.1341854

    38. Sivanandam, S. N. and S. N. Deepa, Principles of Soft Computing, Wiley-India (P) Ltd., New Delhi, 2008.