Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

A Miniature Implanted Antenna for UHF RFID Applications

By Van Hieu Nguyen, Aliou Diallo, Philippe Le Thuc, Robert Staraj, Stephane Lanteri, and Georges F. Carle
Progress In Electromagnetics Research C, Vol. 99, 221-238, 2020


In this paper, the design of a miniature antenna dedicated to be implanted in a small animal and intended to work in the European UHF RFID (865-868 MHz) band is presented. One of the goals of this work is the miniaturization of the radiating element while preserving its efficiency to allow a reliable communication between an external interrogating reader and the implanted device. The radiating element is a small rectangular loop antenna associated with a dipole allowing impedance matching. The antenna has dimensions of 2.4 mm x 25.4 mm x 0.5 mm and integrates an Impinj Monza 4 chip presenting an impedance of 5.5-j74 Ohms at 868 MHz. The antenna is designed and optimized by using the ANSYS HFSS software. The obtained results show a simulated radiation efficiency of 0.7% and simulated total gain of -17.5 dBi. A prototype is realized, and RSSI measurements have demonstrated the possibility of reliable wireless communications between the implanted antenna and an external reader. In addition, Specific Absorption Rate (SAR) calculation indicates that this implanted antenna meets the required safety regulations.


Van Hieu Nguyen, Aliou Diallo, Philippe Le Thuc, Robert Staraj, Stephane Lanteri, and Georges F. Carle, "A Miniature Implanted Antenna for UHF RFID Applications," Progress In Electromagnetics Research C, Vol. 99, 221-238, 2020.


    1. R. S. M. and B. Jacobson, "Endoradiosonde," Nature, Vol. 179, 1239-1240, 1957.

    2. Qureshi, W. A., "Current and future applications of the capsule camera," Nature Rev. Drug Disc., Vol. 3, 7-10, May 2004.

    3. Merli, F., B. Fuchs, J. R. Mosig, and A. K. Skrivervik, "The effect of insulating layers on the performance of implanted antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 21-31, 2011.

    4. Karlsson, A., "Physical limitations of antennas in a lossy medium," IEEE Trans. Antennas Propag., Vol. 52, No. 8, 2027-2033, 2004.

    5. Furse, C. M. and A. Chrysler, "A history & future of implantable antennas," IEEE Antennas and Propagation Society International Symposium (APSURSI), 527-528, 2014.

    6. Kiourti, A., K. A. Psathas, and K. S. Nikita, "Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges," Bioelectromagn. Wiley Period. Inc., Vol. 35, No. 1, 1-15, 2014.

    7. Kiourti, A. and K. S. Nikita, "Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3568-3575, 2012.

    8. Catarinucci, L., R. Colella, L. Mainetti, V. Mighali, L. Patrono, I. Sergi, and L. Tarricone, "Near field UHF RFID antenna system enabling the tracking of small laboratory animals," Int. J. Antennas Propag., Vol. 2013, 1-10, 2013.

    9. Bakore, R., J. C. West, C. Hutchens, and R. Ahmed, "Design of a proposed folded dipole antenna for use with an implantable RFID tag at 915 MHz," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2085-2086, Orlando, FL, USA, 2013.

    10. Garcia-Miquel, A., B. Medina-Rodr´ıguez, N. Vidal, F. M. Ramos, E. Roca, and J. M. Lopez-Villegas, "Design and characterization of a miniaturized implantable UHF RFID tag based on LTCC technology," 11th European Conference on Antennas and Propagation (EUCAP), 1024-1026, 2017.

    11. Dubok, A. and A. B. Smolders, "Increased operational range for implantable UHF RFID antennas," 8th Eur. Conf. Antennas Propag. (EuCAP 2014), 1749-1753, 2014.

    12. Jeevani, J. M., W. Jayasinghe, and D. Uduwawala, "A novel multiband miniature planar inverted f antenna design for bluetooth and WLAN applications," International Journal of Antennas and Propagation, 1-6, 2015.

    13. Skrivervik, A. K., "Implantable antennas: The challenge of efficiency," 7th Eur. Conf. Antennas Propagation, EuCAP 2013, 3627-3631, 2013.

    14. Rodriguez, M., C. Furse, and R. Franklin, "Manufacturing considerations for implantable antennas," IEEE Antennas Propag. Soc. AP-S Int. Symp., 2087-2088, 2013.

    15. Nguyen, V. H., A. Diallo, P. Le Thuc, R. Staraj, S. Lanteri, and G. F. Carle, "Wireless interrogation of small animal phantoms with a miniature implanted UHF RFID tag," Antenna Measurements & Applications (CAMA), IEEE International Conference, Vol. 3, 306-309, 2017.

    16. Karacolak, T., R. Cooper, and E. Topsakal, "Electrical properties of rat skin and design of implantable antennas for medical wireless telemetry," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2806-2812, 2009.

    17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, 1996.

    18. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies,", Report Documentation, Dept. of Physics AFOSR-TR-96 King’s College London, UK, 1996.

    19. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wirel. Components Lett., Vol. 17, No. 12, 2007-2009, 2007.

    20. Perrissol, P., M. Monedero, R. Ndashymie, A. Diallo, P. Le Thuc, R. Staraj, and G. F. Carle, "Wireless interrogation of an implanted temperature sensor in a mouse," Proceed. IEEE International Conference on RFID-Technologies and Applications (RFID-TA), 52-55, 2012.

    21. ERC Recommendation (70-03) [Online], , Available: http://www.erodocdb.dk/docs/doc98/off-pdf/rec7003e.pdf.

    22. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, 2015.

    23. Fujimoto, K. and H. Morishita, Modern Small Antenna, Cambridge University Press, 2013.

    24. Schantz, H. G., "A near field propagation law & a novel fundamental limit to antenna gain versus size," IEEE APS Conf., Vol. 2, 4-7, July 2005.

    25. Orfanidis, S. J., Electromagnetic Waves and Antennas, Prentice-Hall, 2003.

    26. Monza 4 RFID Impinj chip datasheet [Online], , Available: https://support.impinj.com/hc/enus/articles/202756908-Monza-4-RFID-Tag-Chip-Datasheet.

    27. Dobkin, D. M., The RF in RFID, UHF RFID in Practice, 2nd Ed., Amsterdam, Newnes, 2012.

    28. Luh, Y.-P. and Y.-C. Liu, "Measurement of effective reading distance of UHF RFID passive tags," Mod. Mech. Eng., Vol. 03, No. 03, 115-120, 2013.

    29. Karacolak, T., R. Cooper, J. Butler, S. Fisher, and E. Topsakal, "In vivo verification of implantable antennas using rats as model animals," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 334-337, 2010.

    30. Bakore, R., J. C.West, C. Hutchens, and R. Ahmed, "Design of a proposed folded dipole antenna for use with an implantable RFID tag at 915 MHz," Antennas and Propagation Society International Symposium (APSURSI), 2085-2086, 2013.

    31. Galehdar, A., D. V. Thiel, and S. G. O’Keefe, "Antenna efficiency calculations for electrically small, RFID antennas," IEEE Antenna and Wireless Propagation Letters, 2007.

    32. Alrawashdeh, R. S., Y. Huang, M. Kod, and A. Abu Bakar Sajak, "A broadband flexible implantable loop antenna with complementary split ring resonators," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1322-1325, 2015.

    33. Perrissol, P., A. Diallo, P. Le Thuc, R. Staraj, and G. F. Carle, "Performance of a cross dipole antenna dedicated to biological telemetry," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2174-2177, 2014.

    34., , Agilent 85070E Dielectric Probe Kit [Online] Available, http://na.support.keysight.com/materials/help/85070.pdf.

    35., , RFID Impinj Speedway Revolution R420 reader [Online], Available: https://support.impinj.com/hc/en-us/articles/202755358-Speedway-Revolution-Installation-Operations-Guide.

    36. Phatra, C. and P. Krachodnok, "A circularly polarized antenna for UHF RFID reader," 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (EC, 1-4, 2014.

    37. Lee, B. G. and W. Y. Chung, "Multitarget three-dimensional indoor navigation on a pda in a wireless sensor network," IEEE Sens. J., Vol. 11, No. 3, 799-807, March 2011.

    38. Liu, C., Y.-X. Guo, and S. Xiao, "A review of implantable antennas for wireless biomedical devices," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), 2016.

    39. Othman, N., N. A. Samsuri, M. K. A. Rahim, and N. A. Elias, "SAR in the presence of conductive medical implant at 0.9, 1.8 and 2.4 GHz due to close proximity antenna," 10th Eur. Conf. on Antennas Propag. (EuCAP), 8-12, 2016.

    40. Zhao, Y., R. L. Rennaker, C. Hutchens, and T. S. Ibrahim, "Implanted miniaturized antenna for brain computer interface applications: analysis and design," PloS One, Vol. 9, No. 7, 1-10, 2014.

    41. IEEE Standards Coordinating Committee, IEEE C95, , 1-2009: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, April 2006.