In this paper, the investigation about a metal-insulator-metal (MIM) compound plasmonic waveguide is reported, which possesses the transmission property of plasmon induced transparency (PIT) and exhibits the potential application of refractive index sensing. The waveguide structure consists of an MIM-type bus waveguide, a horizontally placed asymmetric H-type resonator (AHR), and a circular ring resonator (CRR). The AHR is directly coupled with the bus waveguide, whilethe CRR is directly coupled to the AHR, but is indirectly coupled to the bus waveguide. Due to the destructive interference between two different transmission paths, PIT effect can be observed in the transmission spectrum. The finite element method (FEM) is used to study the PIT effect in detail. The results show that the transmission characteristics can be flexibly adjusted by changing the geometric parameters of the structure, and the proposed waveguide structure has potential application prospects in the area of temperature and refractive index sensing with higher sensitivity, better figure of merit, and in the area of slow light photonic devices.
2. Lu, H., X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express, Vol. 19, 2910-2915, 2011.
doi:10.1364/OE.19.002910
3. Chen, Z., L. Yu, L. L.Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, "A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system," IEEE Photonics Technol. Lett., Vol. 27, 1695-1698, 2015.
doi:10.1109/LPT.2015.2437850
4. Tao, J., Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk resonator structure containing nonlinear material," Plasmonics, Vol. 6, 753-759, 2011.
doi:10.1007/s11468-011-9260-1
5. Wu, D., C. Liu, Y. M. Liu, L. Yu, Z. Y. Yu, L. Chen, R. Ma, and H. Ye, "Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region," Opt. Lett., Vol. 42, 450-453, 2017.
doi:10.1364/OL.42.000450
6. Li, B. X., H. J. Li, L. L. Zeng, S. P. Zhan, Z. H. He, Z. Q. Chen, and H. Xu, "High-sensitivity sensing based on plasmon-induced transparency," IEEE Photonics J., Vol. 7, 1-7, 2015.
7. Lu, H., X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, "Induced transparency in nanoscale plasmonic resonator systems," Opt. Lett., Vol. 36, 3233-3235, 2011.
doi:10.1364/OL.36.003233
8. Nikolajsen, T., K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett., Vol. 85, 5833-5835, 2004.
doi:10.1063/1.1835997
9. Wei, Z. C., X. M. Zhang, N. F. Zhong, X. P. Tan, X. P. Li, Y. B. Liu, F. Q. Wang, H. Y. Meng, and R. S. Liang, "Optical band-stop filter and muti-wavelength channel selector with plasmonic complementary aperture embedded in double-ring resonator," Photon. Nanostruct., Vol. 23, 45-49, 2017.
doi:10.1016/j.photonics.2016.11.002
10. Li, H. J., X. Zhai, R. Wujiaihemaiti, L. L. Wang, and X. F. Li, "Tunable optical filters and multichannel switches based on MIM plasmonic nanodisk resonators inset a silver bar," Physica Scripta, Vol. 90, 015604, 2014.
doi:10.1088/0031-8949/90/1/015604
11. Wang, B. and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett., Vol. 29, 1992-1994, 2004.
doi:10.1364/OL.29.001992
12. Yan, X. C., T. Wang, X. Han, S. Y. Xiao, Y. J. Zhu, and Y. B. Wang, "High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators," Plasmonics, Vol. 12, 1449-1455, 2016.
doi:10.1007/s11468-016-0405-0
13. Guo, X. D., H. Hu, X. Zhu, X. X. Yang, and Q. Dai, "Higher order Fano graphene metamaterials for nanoscale optical sensing," Nanoscale, Vol. 9, 14998-15004, 2017.
doi:10.1039/C7NR05919A
14. Veronis, G. and S. H. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides ," Appl. Phys. Lett., Vol. 87, 131102, 2005.
doi:10.1063/1.2056594
15. Wang, G., W. Zhang, Y. K. Gong, and J. Liang, "Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide," IEEE Photonics Technol. Lett., Vol. 27, 89-92, 2014.
doi:10.1109/LPT.2014.2362293
16. Niu, Y. Y., J. C. Wang, D. D. Liu, Z. D. Hu, T. Sang, and S. M. Gao, "Detuned multiple plasmon-induced transparency with asymmetric gear-shaped ring resonators," Optik, Vol. 140, 1038-1046, 2017.
doi:10.1016/j.ijleo.2017.05.040
17. Chen, H., H. Y. Zhang, M. D. Liu, Y. K. Zhao, S. D. Liu, and Y. P. Zhang, "Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials," Opt. Commun., Vol. 423, 57-62, 2018.
doi:10.1016/j.optcom.2018.04.021
18. Huang, Y., C. J. Min, P. Dastmalchi, and G. Veronis, "Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors," Opt. Express, Vol. 23, 14922-14936, 2015.
doi:10.1364/OE.23.014922
19. Cao, G. T., H. J. Li, S. P. Zhan, H. Q. Xu, Z. M. Liu, Z. H. He, and Y. Wang, "Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators ," Opt. Express, Vol. 21, 9198-9205, 2013.
doi:10.1364/OE.21.009198
20. Liu, X. J., J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, "Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode," Appl. Phys. Lett., Vol. 100, 131101, 2012.
doi:10.1063/1.3696306
21. He, J. L. and S. Yang, "Line shapes in a plasmonic waveguide system based on plasmon-induced transparency and its application in nanosensor," Opt. Commun., Vol. 381, 163-168, 2016.
doi:10.1016/j.optcom.2016.06.059
22. Noual, A., O. E. Abouti, E. H. El Boudouti, A. Akjouj, Y. Pennec, and B. Djafari-Rouhani, "Plasmonic-induced transparency in a MIM waveguide with two side-coupled cavities," Appl. Phys. A, Vol. 123, 49, 2017.
doi:10.1007/s00339-016-0638-y
23. Wang, J. C., Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. M. Gao, "Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system," Plasmonics, Vol. 13, 609-616, 2018.
doi:10.1007/s11468-017-0551-z
24. Liu, L., S. X. Xia, X. Luo, X. Zhai, Y. B. Yu, and L. L. Wang, "Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide," Opt. Commun., Vol. 418, 27-31, 2018.
doi:10.1016/j.optcom.2018.02.054
25. Ye, J. L., F. Q.Wang, R. S. Liang, Z. C. Wei, H. Y.Meng, J.W. Zhong, and L. H. Jiang, "Plasmon induced transparency in loop-stub resonator-coupled waveguide systems," Opt. Commun., Vol. 370, 36-42, 2016.
doi:10.1016/j.optcom.2016.02.022
26. Chen, Z., X. K. Song, R. Z. Jiao, G. Y. Duan, L. L. Wang, and L. Yu, "Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting," IEEE Photonics J., Vol. 7, 1-8, 2015.
27. Tang, B. J., J. C. Wang, X. S. Xia, X. Y. Liang, C. Song, and S. N. Qu, "Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators," Appl. Phys. Express, Vol. 8, 032202, 2015.
doi:10.7567/APEX.8.032202
28. Liu, D. D., J. C. Wang, and J. Lu, "Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators, Plasmonics II," International Society for Optics and Photonics, Vol. 10028, 100280C, 2016.
29. Guo, Y. H., L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, H. Y. Li, and X. G. Luo, "A plasmonic splitter based on slot resonator," Opt. Express, Vol. 19, 13831-13838, 2011.
doi:10.1364/OE.19.013831
30. Zhang, Q., X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express, Vol. 17, 7549-7554, 2009.
doi:10.1364/OE.17.007549
31. Zhang, Z. D., R. B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, "Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator," Plasmonics, Vol. 12, 1007-1013, 2017.
doi:10.1007/s11468-016-0352-9
32. Li, H. J., L. L. Wang, and X. Zhai, "Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings," IEEE Photonics Technol. Lett., Vol. 28, 1454-1457, 2016.
doi:10.1109/LPT.2016.2554123
33. Wen, K. H., Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, "Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure," IEEE Photonics J., Vol. 8, 1-8, 2016.
34. Yin, J., J. P. Tian, and R. C. Yang, "Investigation of the transmission properties of a plasmonic MIM waveguide coupled with two ring resonators," Mater. Res. Express, Vol. 6, 035018, 2019.
doi:10.1088/2053-1591/aaf483
35. Xiao, L. P., F. Q. Wang, R. S. Liang, S. W. Zou, and M. Hu, "A high-sensitivity refractive-index sensor based on plasmonic waveguides asymmetrically coupled with a nanodisk resonator," Chin. Phys. Lett., Vol. 32, 070701, 2015.
doi:10.1088/0256-307X/32/7/070701
36. Wu, T. S., Y. M. Liu, Z. Y. Yu, H. Ye, Y. W. Peng, C. G. Shu, C. H. Yang, W. Zhang, and H. F. He, "A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular resonator," Opt. Commun., Vol. 339, 1-6, 2015.
doi:10.1016/j.optcom.2014.11.064
37. Shen, S. M., Y. L. Liu, W. Q. Liu, Q. L. Tan, J. J. Xiong, and W. D. Zhang, "Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials," Mater. Res. Express, Vol. 5, 125804, 2018.
doi:10.1088/2053-1591/aae2ed
38. Lin, Q., Z. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, "A novel design of plasmon-induced absorption sensor," Appl. Phys. Express, Vol. 9, 062002, 2016.
doi:10.7567/APEX.9.062002
39. Li, X. P., Z. C. Wei, Y. B. Liu, N. F. Zhong, X. P. Tan, S. S. Shi, H. Z. Liu, and R. S. Liang, "Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator," Phys. Lett. A, Vol. 380, 232-237, 2016.
doi:10.1016/j.physleta.2015.10.035