Vol. 98
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-01-07
Investigation on Plasmon Induced Transparency and Its Application in an MIM Typecompound Plasmonic Waveguide
By
Progress In Electromagnetics Research C, Vol. 98, 199-212, 2020
Abstract
In this paper, the investigation about a metal-insulator-metal (MIM) compound plasmonic waveguide is reported, which possesses the transmission property of plasmon induced transparency (PIT) and exhibits the potential application of refractive index sensing. The waveguide structure consists of an MIM-type bus waveguide, a horizontally placed asymmetric H-type resonator (AHR), and a circular ring resonator (CRR). The AHR is directly coupled with the bus waveguide, whilethe CRR is directly coupled to the AHR, but is indirectly coupled to the bus waveguide. Due to the destructive interference between two different transmission paths, PIT effect can be observed in the transmission spectrum. The finite element method (FEM) is used to study the PIT effect in detail. The results show that the transmission characteristics can be flexibly adjusted by changing the geometric parameters of the structure, and the proposed waveguide structure has potential application prospects in the area of temperature and refractive index sensing with higher sensitivity, better figure of merit, and in the area of slow light photonic devices.
Citation
Jinping Tian, and Jiejin Li, "Investigation on Plasmon Induced Transparency and Its Application in an MIM Typecompound Plasmonic Waveguide," Progress In Electromagnetics Research C, Vol. 98, 199-212, 2020.
doi:10.2528/PIERC19102001
References

1. Zheng, G. G., L. H. Xu, Y. Z. Liu, and W. Su, "Optical filter and sensor based on plasmonic-gap-waveguide coupled with T-shaped resonators," Optik, Vol. 126, 4056-4060, 2015.
doi:10.1016/j.ijleo.2015.07.206

2. Lu, H., X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express, Vol. 19, 2910-2915, 2011.
doi:10.1364/OE.19.002910

3. Chen, Z., L. Yu, L. L.Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, "A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system," IEEE Photonics Technol. Lett., Vol. 27, 1695-1698, 2015.
doi:10.1109/LPT.2015.2437850

4. Tao, J., Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk resonator structure containing nonlinear material," Plasmonics, Vol. 6, 753-759, 2011.
doi:10.1007/s11468-011-9260-1

5. Wu, D., C. Liu, Y. M. Liu, L. Yu, Z. Y. Yu, L. Chen, R. Ma, and H. Ye, "Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region," Opt. Lett., Vol. 42, 450-453, 2017.
doi:10.1364/OL.42.000450

6. Li, B. X., H. J. Li, L. L. Zeng, S. P. Zhan, Z. H. He, Z. Q. Chen, and H. Xu, "High-sensitivity sensing based on plasmon-induced transparency," IEEE Photonics J., Vol. 7, 1-7, 2015.

7. Lu, H., X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, "Induced transparency in nanoscale plasmonic resonator systems," Opt. Lett., Vol. 36, 3233-3235, 2011.
doi:10.1364/OL.36.003233

8. Nikolajsen, T., K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett., Vol. 85, 5833-5835, 2004.
doi:10.1063/1.1835997

9. Wei, Z. C., X. M. Zhang, N. F. Zhong, X. P. Tan, X. P. Li, Y. B. Liu, F. Q. Wang, H. Y. Meng, and R. S. Liang, "Optical band-stop filter and muti-wavelength channel selector with plasmonic complementary aperture embedded in double-ring resonator," Photon. Nanostruct., Vol. 23, 45-49, 2017.
doi:10.1016/j.photonics.2016.11.002

10. Li, H. J., X. Zhai, R. Wujiaihemaiti, L. L. Wang, and X. F. Li, "Tunable optical filters and multichannel switches based on MIM plasmonic nanodisk resonators inset a silver bar," Physica Scripta, Vol. 90, 015604, 2014.
doi:10.1088/0031-8949/90/1/015604

11. Wang, B. and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett., Vol. 29, 1992-1994, 2004.
doi:10.1364/OL.29.001992

12. Yan, X. C., T. Wang, X. Han, S. Y. Xiao, Y. J. Zhu, and Y. B. Wang, "High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators," Plasmonics, Vol. 12, 1449-1455, 2016.
doi:10.1007/s11468-016-0405-0

13. Guo, X. D., H. Hu, X. Zhu, X. X. Yang, and Q. Dai, "Higher order Fano graphene metamaterials for nanoscale optical sensing," Nanoscale, Vol. 9, 14998-15004, 2017.
doi:10.1039/C7NR05919A

14. Veronis, G. and S. H. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides ," Appl. Phys. Lett., Vol. 87, 131102, 2005.
doi:10.1063/1.2056594

15. Wang, G., W. Zhang, Y. K. Gong, and J. Liang, "Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide," IEEE Photonics Technol. Lett., Vol. 27, 89-92, 2014.
doi:10.1109/LPT.2014.2362293

16. Niu, Y. Y., J. C. Wang, D. D. Liu, Z. D. Hu, T. Sang, and S. M. Gao, "Detuned multiple plasmon-induced transparency with asymmetric gear-shaped ring resonators," Optik, Vol. 140, 1038-1046, 2017.
doi:10.1016/j.ijleo.2017.05.040

17. Chen, H., H. Y. Zhang, M. D. Liu, Y. K. Zhao, S. D. Liu, and Y. P. Zhang, "Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials," Opt. Commun., Vol. 423, 57-62, 2018.
doi:10.1016/j.optcom.2018.04.021

18. Huang, Y., C. J. Min, P. Dastmalchi, and G. Veronis, "Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors," Opt. Express, Vol. 23, 14922-14936, 2015.
doi:10.1364/OE.23.014922

19. Cao, G. T., H. J. Li, S. P. Zhan, H. Q. Xu, Z. M. Liu, Z. H. He, and Y. Wang, "Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators ," Opt. Express, Vol. 21, 9198-9205, 2013.
doi:10.1364/OE.21.009198

20. Liu, X. J., J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, "Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode," Appl. Phys. Lett., Vol. 100, 131101, 2012.
doi:10.1063/1.3696306

21. He, J. L. and S. Yang, "Line shapes in a plasmonic waveguide system based on plasmon-induced transparency and its application in nanosensor," Opt. Commun., Vol. 381, 163-168, 2016.
doi:10.1016/j.optcom.2016.06.059

22. Noual, A., O. E. Abouti, E. H. El Boudouti, A. Akjouj, Y. Pennec, and B. Djafari-Rouhani, "Plasmonic-induced transparency in a MIM waveguide with two side-coupled cavities," Appl. Phys. A, Vol. 123, 49, 2017.
doi:10.1007/s00339-016-0638-y

23. Wang, J. C., Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. M. Gao, "Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system," Plasmonics, Vol. 13, 609-616, 2018.
doi:10.1007/s11468-017-0551-z

24. Liu, L., S. X. Xia, X. Luo, X. Zhai, Y. B. Yu, and L. L. Wang, "Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide," Opt. Commun., Vol. 418, 27-31, 2018.
doi:10.1016/j.optcom.2018.02.054

25. Ye, J. L., F. Q.Wang, R. S. Liang, Z. C. Wei, H. Y.Meng, J.W. Zhong, and L. H. Jiang, "Plasmon induced transparency in loop-stub resonator-coupled waveguide systems," Opt. Commun., Vol. 370, 36-42, 2016.
doi:10.1016/j.optcom.2016.02.022

26. Chen, Z., X. K. Song, R. Z. Jiao, G. Y. Duan, L. L. Wang, and L. Yu, "Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting," IEEE Photonics J., Vol. 7, 1-8, 2015.

27. Tang, B. J., J. C. Wang, X. S. Xia, X. Y. Liang, C. Song, and S. N. Qu, "Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators," Appl. Phys. Express, Vol. 8, 032202, 2015.
doi:10.7567/APEX.8.032202

28. Liu, D. D., J. C. Wang, and J. Lu, "Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators, Plasmonics II," International Society for Optics and Photonics, Vol. 10028, 100280C, 2016.

29. Guo, Y. H., L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, H. Y. Li, and X. G. Luo, "A plasmonic splitter based on slot resonator," Opt. Express, Vol. 19, 13831-13838, 2011.
doi:10.1364/OE.19.013831

30. Zhang, Q., X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express, Vol. 17, 7549-7554, 2009.
doi:10.1364/OE.17.007549

31. Zhang, Z. D., R. B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, "Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator," Plasmonics, Vol. 12, 1007-1013, 2017.
doi:10.1007/s11468-016-0352-9

32. Li, H. J., L. L. Wang, and X. Zhai, "Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings," IEEE Photonics Technol. Lett., Vol. 28, 1454-1457, 2016.
doi:10.1109/LPT.2016.2554123

33. Wen, K. H., Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, "Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure," IEEE Photonics J., Vol. 8, 1-8, 2016.

34. Yin, J., J. P. Tian, and R. C. Yang, "Investigation of the transmission properties of a plasmonic MIM waveguide coupled with two ring resonators," Mater. Res. Express, Vol. 6, 035018, 2019.
doi:10.1088/2053-1591/aaf483

35. Xiao, L. P., F. Q. Wang, R. S. Liang, S. W. Zou, and M. Hu, "A high-sensitivity refractive-index sensor based on plasmonic waveguides asymmetrically coupled with a nanodisk resonator," Chin. Phys. Lett., Vol. 32, 070701, 2015.
doi:10.1088/0256-307X/32/7/070701

36. Wu, T. S., Y. M. Liu, Z. Y. Yu, H. Ye, Y. W. Peng, C. G. Shu, C. H. Yang, W. Zhang, and H. F. He, "A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular resonator," Opt. Commun., Vol. 339, 1-6, 2015.
doi:10.1016/j.optcom.2014.11.064

37. Shen, S. M., Y. L. Liu, W. Q. Liu, Q. L. Tan, J. J. Xiong, and W. D. Zhang, "Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials," Mater. Res. Express, Vol. 5, 125804, 2018.
doi:10.1088/2053-1591/aae2ed

38. Lin, Q., Z. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, "A novel design of plasmon-induced absorption sensor," Appl. Phys. Express, Vol. 9, 062002, 2016.
doi:10.7567/APEX.9.062002

39. Li, X. P., Z. C. Wei, Y. B. Liu, N. F. Zhong, X. P. Tan, S. S. Shi, H. Z. Liu, and R. S. Liang, "Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator," Phys. Lett. A, Vol. 380, 232-237, 2016.
doi:10.1016/j.physleta.2015.10.035