Vol. 98

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Investigation on Plasmon Induced Transparency and ITS Application in an MIM Typecompound Plasmonic Waveguide

By Jinping Tian and Jiejin Li
Progress In Electromagnetics Research C, Vol. 98, 199-212, 2020


In this paper, the investigation about a metal-insulator-metal (MIM) compound plasmonic waveguide is reported, which possesses the transmission property of plasmon induced transparency (PIT) and exhibits the potential application of refractive index sensing. The waveguide structure consists of an MIM-type bus waveguide, a horizontally placed asymmetric H-type resonator (AHR), and a circular ring resonator (CRR). The AHR is directly coupled with the bus waveguide, whilethe CRR is directly coupled to the AHR, but is indirectly coupled to the bus waveguide. Due to the destructive interference between two different transmission paths, PIT effect can be observed in the transmission spectrum. The finite element method (FEM) is used to study the PIT effect in detail. The results show that the transmission characteristics can be flexibly adjusted by changing the geometric parameters of the structure, and the proposed waveguide structure has potential application prospects in the area of temperature and refractive index sensing with higher sensitivity, better figure of merit, and in the area of slow light photonic devices.


Jinping Tian and Jiejin Li, "Investigation on Plasmon Induced Transparency and ITS Application in an MIM Typecompound Plasmonic Waveguide," Progress In Electromagnetics Research C, Vol. 98, 199-212, 2020.


    1. Zheng, G. G., L. H. Xu, Y. Z. Liu, and W. Su, "Optical filter and sensor based on plasmonic-gap-waveguide coupled with T-shaped resonators," Optik, Vol. 126, 4056-4060, 2015.

    2. Lu, H., X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express, Vol. 19, 2910-2915, 2011.

    3. Chen, Z., L. Yu, L. L.Wang, G. Y. Duan, Y. F. Zhao, and J. H. Xiao, "A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system," IEEE Photonics Technol. Lett., Vol. 27, 1695-1698, 2015.

    4. Tao, J., Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk resonator structure containing nonlinear material," Plasmonics, Vol. 6, 753-759, 2011.

    5. Wu, D., C. Liu, Y. M. Liu, L. Yu, Z. Y. Yu, L. Chen, R. Ma, and H. Ye, "Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region," Opt. Lett., Vol. 42, 450-453, 2017.

    6. Li, B. X., H. J. Li, L. L. Zeng, S. P. Zhan, Z. H. He, Z. Q. Chen, and H. Xu, "High-sensitivity sensing based on plasmon-induced transparency," IEEE Photonics J., Vol. 7, 1-7, 2015.

    7. Lu, H., X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, "Induced transparency in nanoscale plasmonic resonator systems," Opt. Lett., Vol. 36, 3233-3235, 2011.

    8. Nikolajsen, T., K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett., Vol. 85, 5833-5835, 2004.

    9. Wei, Z. C., X. M. Zhang, N. F. Zhong, X. P. Tan, X. P. Li, Y. B. Liu, F. Q. Wang, H. Y. Meng, and R. S. Liang, "Optical band-stop filter and muti-wavelength channel selector with plasmonic complementary aperture embedded in double-ring resonator," Photon. Nanostruct., Vol. 23, 45-49, 2017.

    10. Li, H. J., X. Zhai, R. Wujiaihemaiti, L. L. Wang, and X. F. Li, "Tunable optical filters and multichannel switches based on MIM plasmonic nanodisk resonators inset a silver bar," Physica Scripta, Vol. 90, 015604, 2014.

    11. Wang, B. and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Opt. Lett., Vol. 29, 1992-1994, 2004.

    12. Yan, X. C., T. Wang, X. Han, S. Y. Xiao, Y. J. Zhu, and Y. B. Wang, "High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring resonators," Plasmonics, Vol. 12, 1449-1455, 2016.

    13. Guo, X. D., H. Hu, X. Zhu, X. X. Yang, and Q. Dai, "Higher order Fano graphene metamaterials for nanoscale optical sensing," Nanoscale, Vol. 9, 14998-15004, 2017.

    14. Veronis, G. and S. H. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides ," Appl. Phys. Lett., Vol. 87, 131102, 2005.

    15. Wang, G., W. Zhang, Y. K. Gong, and J. Liang, "Tunable slow light based on plasmon-induced transparency in dual-stub-coupled waveguide," IEEE Photonics Technol. Lett., Vol. 27, 89-92, 2014.

    16. Niu, Y. Y., J. C. Wang, D. D. Liu, Z. D. Hu, T. Sang, and S. M. Gao, "Detuned multiple plasmon-induced transparency with asymmetric gear-shaped ring resonators," Optik, Vol. 140, 1038-1046, 2017.

    17. Chen, H., H. Y. Zhang, M. D. Liu, Y. K. Zhao, S. D. Liu, and Y. P. Zhang, "Tunable multiple plasmon-induced transparency in three-dimensional Dirac semimetal metamaterials," Opt. Commun., Vol. 423, 57-62, 2018.

    18. Huang, Y., C. J. Min, P. Dastmalchi, and G. Veronis, "Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors," Opt. Express, Vol. 23, 14922-14936, 2015.

    19. Cao, G. T., H. J. Li, S. P. Zhan, H. Q. Xu, Z. M. Liu, Z. H. He, and Y. Wang, "Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators ," Opt. Express, Vol. 21, 9198-9205, 2013.

    20. Liu, X. J., J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, "Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode," Appl. Phys. Lett., Vol. 100, 131101, 2012.

    21. He, J. L. and S. Yang, "Line shapes in a plasmonic waveguide system based on plasmon-induced transparency and its application in nanosensor," Opt. Commun., Vol. 381, 163-168, 2016.

    22. Noual, A., O. E. Abouti, E. H. El Boudouti, A. Akjouj, Y. Pennec, and B. Djafari-Rouhani, "Plasmonic-induced transparency in a MIM waveguide with two side-coupled cavities," Appl. Phys. A, Vol. 123, 49, 2017.

    23. Wang, J. C., Y. Y. Niu, D. D. Liu, Z. D. Hu, T. Sang, and S. M. Gao, "Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system," Plasmonics, Vol. 13, 609-616, 2018.

    24. Liu, L., S. X. Xia, X. Luo, X. Zhai, Y. B. Yu, and L. L. Wang, "Multiple detuned-resonator induced transparencies in MIM plasmonic waveguide," Opt. Commun., Vol. 418, 27-31, 2018.

    25. Ye, J. L., F. Q.Wang, R. S. Liang, Z. C. Wei, H. Y.Meng, J.W. Zhong, and L. H. Jiang, "Plasmon induced transparency in loop-stub resonator-coupled waveguide systems," Opt. Commun., Vol. 370, 36-42, 2016.

    26. Chen, Z., X. K. Song, R. Z. Jiao, G. Y. Duan, L. L. Wang, and L. Yu, "Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting," IEEE Photonics J., Vol. 7, 1-8, 2015.

    27. Tang, B. J., J. C. Wang, X. S. Xia, X. Y. Liang, C. Song, and S. N. Qu, "Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators," Appl. Phys. Express, Vol. 8, 032202, 2015.

    28. Liu, D. D., J. C. Wang, and J. Lu, "Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators, Plasmonics II," International Society for Optics and Photonics, Vol. 10028, 100280C, 2016.

    29. Guo, Y. H., L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, H. Y. Li, and X. G. Luo, "A plasmonic splitter based on slot resonator," Opt. Express, Vol. 19, 13831-13838, 2011.

    30. Zhang, Q., X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express, Vol. 17, 7549-7554, 2009.

    31. Zhang, Z. D., R. B. Wang, Z. Y. Zhang, J. Tang, W. D. Zhang, C. Y. Xue, and S. B. Yan, "Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator," Plasmonics, Vol. 12, 1007-1013, 2017.

    32. Li, H. J., L. L. Wang, and X. Zhai, "Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings," IEEE Photonics Technol. Lett., Vol. 28, 1454-1457, 2016.

    33. Wen, K. H., Y. H. Hu, L. Chen, J. Y. Zhou, M. He, L. Lei, and Z. M. Meng, "Plasmonic-induced absorption and transparency based on a compact ring-groove joint MIM waveguide structure," IEEE Photonics J., Vol. 8, 1-8, 2016.

    34. Yin, J., J. P. Tian, and R. C. Yang, "Investigation of the transmission properties of a plasmonic MIM waveguide coupled with two ring resonators," Mater. Res. Express, Vol. 6, 035018, 2019.

    35. Xiao, L. P., F. Q. Wang, R. S. Liang, S. W. Zou, and M. Hu, "A high-sensitivity refractive-index sensor based on plasmonic waveguides asymmetrically coupled with a nanodisk resonator," Chin. Phys. Lett., Vol. 32, 070701, 2015.

    36. Wu, T. S., Y. M. Liu, Z. Y. Yu, H. Ye, Y. W. Peng, C. G. Shu, C. H. Yang, W. Zhang, and H. F. He, "A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular resonator," Opt. Commun., Vol. 339, 1-6, 2015.

    37. Shen, S. M., Y. L. Liu, W. Q. Liu, Q. L. Tan, J. J. Xiong, and W. D. Zhang, "Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials," Mater. Res. Express, Vol. 5, 125804, 2018.

    38. Lin, Q., Z. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, "A novel design of plasmon-induced absorption sensor," Appl. Phys. Express, Vol. 9, 062002, 2016.

    39. Li, X. P., Z. C. Wei, Y. B. Liu, N. F. Zhong, X. P. Tan, S. S. Shi, H. Z. Liu, and R. S. Liang, "Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator," Phys. Lett. A, Vol. 380, 232-237, 2016.