Vol. 98

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-05

Computation of the Fields and Potentials for Particle Tracing Under the Effect of Electromagnetic Forces

By Christos Tsironis
Progress In Electromagnetics Research C, Vol. 98, 171-186, 2020
doi:10.2528/PIERC19092901

Abstract

In this work we describe a model for the computation of the scalar and vector potentials associated with known electric and magnetic fields, as well as for the inverse problem. The formulation is general, but the applications motivating our study are related to the requirements for advanced modeling of charged particle dynamics in plasma-driven electromagnetic environments. The dependence of the electromagnetic field and its potentials in space and time is assumed to be separable, where the spatial part is connected to established solutions of the static problem, and the temporal part is derived from a phenomenological description based on time-series of measurements. We benchmark our model in the simple problem of a finite current-carrying conductor, for which an analytical solution is feasible, and then present numerical results from simulations of a magnetospheric disturbance in geospace.

Citation


Christos Tsironis, "Computation of the Fields and Potentials for Particle Tracing Under the Effect of Electromagnetic Forces," Progress In Electromagnetics Research C, Vol. 98, 171-186, 2020.
doi:10.2528/PIERC19092901
http://jpier.org/PIERC/pier.php?paper=19092901

References


    1. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Wiley, New York, 1999.

    2. Goldstein, H., Classical Mechanics, 2nd Ed., Addison-Wesley, Boston, 1980.

    3. Griffiths, D. J., Introduction in Electrodynamics, 4th Ed., Addison-Wesley, Boston, 2012.

    4. Parks, G. K., Physics of Space Plasmas: An Introduction, Addison-Wesley, New York, 1991.

    5. Jackson, J. D., "From Lorenz to Coulomb and other explicit gauge transformations," Am. J. Phys., Vol. 70, 917-928, 2002.
    doi:10.1119/1.1491265

    6. Carpenter, C. J., "Electromagnetic energy and power in terms of charges and potentials instead of fields," IEE Proc. A, Vol. 136, 55-65, 1989.

    7. Tsironis, C. and L. Vlahos, "Anomalous transport of magnetized electrons interacting with EC waves," Plasma Phys. Control. Fusion, Vol. 47, 131-144, 2005.
    doi:10.1088/0741-3335/47/1/008

    8. Anastasiadis, A., I. A. Daglis, and C. Tsironis, "Ion heating in an auroral potential structure," Astron. Astrophys., Vol. 419, 793-799, 2004.
    doi:10.1051/0004-6361:20034513

    9. Pulkkinen, T. I., N. A. Tsyganenko, H. Reiner, and W. Friedel, The Inner Magnetosphere: Physics and Modeling, American Geophysical Union, Washington, 2005.
    doi:10.1029/GM155

    10. Tsironis, C., A. Anastasiadis, C. Katsavrias, and I. A. Daglis, "Modeling of ion dynamics in the inner geospace during enhanced magnetospheric activity," Ann. Geophys., Vol. 34, 171-185, 2016.
    doi:10.5194/angeo-34-171-2016

    11. Arfken, G. B. and H.-J. Weber, Mathematical Methods for Physicists, 6th Ed., Academic Press, Cambridge, 2005.

    12. Rostocker, G., "Geomagnetic indices," Rev. Geophys., Vol. 10, 935-950, 1972.
    doi:10.1029/RG010i004p00935

    13. Tsyganenko, N. A., "Data-based modelling of the Earth’s dynamic magnetosphere: A review," Ann. Geophys., Vol. 31, 1745-1772, 2013.
    doi:10.5194/angeo-31-1745-2013

    14. Goldston, R. J. and P. J. Rutherford, Introduction to Plasma Physics, CRC Press, Florida, 1995.
    doi:10.1887/075030183X

    15. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Ninth Printing), Dover Publications, New York, 1970.

    16. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 90, 2nd Ed., Cambridge University Press, New York, 1996.

    17. Akasofu, S. I., "Energy coupling between the solar wind and the magnetosphere," Space Sci. Rev., Vol. 28, 121-190, 1981.
    doi:10.1007/BF00218810

    18. Russell, C. T., "The solar wind interaction with the Earth’s magnetosphere," IEEE Trans. Plasma Sci., Vol. 28, 1818-1830, 2000.
    doi:10.1109/27.902211

    19. Metallinou, F.-A., "Growth and decay of magnetic storms in geospace,", Ph.D. Thesis, Aristotle University of Thessaloniki, 2008.

    20. Delcourt, D. C., "Particle acceleration by inductive electric fields in the inner magnetosphere," J.A.S.T.P., Vol. 64, 551-559, 2002.

    21. Arykov, A. A. and Yu. P. Maltsev, "Contribution of various sources to the geomagnetic storm field," Geomag. Aeron., Vol. 33, 67-74, 1993.

    22. Volland, H., "A semiempirical model of large-scale magnetospheric electric fields," J. Geophys. Res., Vol. 78, 171-180, 1973.
    doi:10.1029/JA078i001p00171

    23. Boyle, C. B., P. H. Reiff, and M. R. Hairston, "Empirical polar cap potentials," J. Geophys. Res., Vol. 102, 111-125, 1997.
    doi:10.1029/96JA01742

    24. Weimer, D. R., "Improved ionospheric electrodynamic models and application to calculating Joule heating rates," J. Geophys. Res., Vol. 110, A05306, 1997.