Vol. 98

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-12-22

Step-Shaped Cavity-Backed Antenna and Wideband Wide-Angle Impedance Matching in Planar Phased Array

By Yaqing Wen, Guoming Gao, and Wenjun Chen
Progress In Electromagnetics Research C, Vol. 98, 45-55, 2020
doi:10.2528/PIERC19081701

Abstract

An improved wideband cavity-backed antenna and a planar phased array with wideband wide-angle impedance matching (WAIM) are provided in this paper. A step-shaped cavity is applied in the antenna, so the relative bandwidth of VSWR < 2 can be improved to more than 52% without increasing the cavity profile. Furthermore, a planar phased array constructed by the cavity-backed antenna can work with a wide-angle scanning range of ±60° at both E- and H-planes. Due to the wide-angle scanning range, the impedance matching for the phased array will be unstable in the required wideband. Consequently, the matching layer with metamaterials has been loaded on the phased array. The VSWR is controlled within 2 in E-plane and 3.5 in H-plane during the scanning range of ±60° in wide bandwidth.

Citation


Yaqing Wen, Guoming Gao, and Wenjun Chen, "Step-Shaped Cavity-Backed Antenna and Wideband Wide-Angle Impedance Matching in Planar Phased Array," Progress In Electromagnetics Research C, Vol. 98, 45-55, 2020.
doi:10.2528/PIERC19081701
http://jpier.org/PIERC/pier.php?paper=19081701

References


    1. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Ed., Artech House Antennas and Propagation Library, Artech Print on Demand, Norwood, MA, USA, 2008.

    2. Balanis, C. A., Antenna Theory, Analysis and Design, 2nd Ed., Wiley, New York, NY, USA, 1997.

    3. Awida, M. H., A. H. Kamel, and A. E. Fathy, "Analysis and design of wide-scan angle wide-band phased arrays of substrate-integrated cavity-backed patches," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 3034-3041, Jun. 2013.
    doi:10.1109/TAP.2013.2251595

    4. Ding, Z. F., S. Q. Xiao, C. R. Liu, M. C. Tang, C. Zhang, and B. Z. Wang, "Design of a broadband, wide-beam hollow cavity multilayer antenna for phased array applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1040-1043, 2016.
    doi:10.1109/LAWP.2015.2491180

    5. Yang, W. W. and J. Y. Zhou, "Wideband circularly polarized cavity-backed aperture antenna with a parasitic square patch," IEEE Antennas Wireless Propag. Lett., Vol. 13, 197-200, 2014.
    doi:10.1109/LAWP.2014.2298252

    6. Xia, R.-L., S.-W. Qu, S. W. Yang, and Y. Chen, "Wideband wide-scanning phased array with connected backed cavities and parasitic striplines," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 1767-1775, Apr. 2018.
    doi:10.1109/TAP.2018.2803131

    7. Magill, E. and H. A. Wheeler, "Wide-angle impedance matching of a planar array antenna by a dielectric sheet," IEEE Trans. Antennas Propag., Vol. 14, No. 1, 49-53, Jan. 1966.
    doi:10.1109/TAP.1966.1138622

    8. Chen, C. C., "Broad-band impedance matching of rectangular waveguide phased arrays," IEEE Trans. Antennas Propag., Vol. 21, No. 3, 298-302, May 1973.
    doi:10.1109/TAP.1973.1140509

    9. Oliveri, G. and A. Massa, "Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 467-481, Feb. 2011.
    doi:10.1109/TAP.2010.2096400

    10. Oliveri, G., M. Carlin, and A. Massa, "Complex-weight sparse linear array synthesis by Bayesian compressive sampling," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2309-2326, May 2012.
    doi:10.1109/TAP.2012.2189742

    11. Qu, S.W., D. J. He, S.W. Yang, and Z. P. Nie, "Novel parasitic microstrip arrays for low-cost active phased array applications," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1731-1737, Apr. 2014.
    doi:10.1109/TAP.2013.2262071

    12. Qu, S. W., D. J. He, M. Y. Xiao, Z. P. Nie, and C. H. Chan, "High efficiency periodic sparse patch array based on mutual coupling," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1317-1320, 2011.

    13. Qu, S. W., P. F. Li, R. L. Xia, S. W. Yang, J. Hu, and Z. P. Nie, "Low-cost periodic sparse cavity-backed phased array based on multiport elements," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 4175-4179, Sept. 2015.
    doi:10.1109/TAP.2015.2444433

    14. Xiao, S. W., S. W. Yang, H. Y. Zhang, Q. S. Xiao, Y. K. Chen, and S. W. Qu, "Practical implementation of wideband and wide-scanning cylindrically conformal phased array," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5729-5733, Aug. 2019.
    doi:10.1109/TAP.2019.2922760

    15. Oliveri, G., F. Viani, N. Anselmi, and A. Massa, "Synthesis of multilayer WAIM coatings for planar-phased arrays within the system-by-design framework," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2482-2496, Jun. 2015.
    doi:10.1109/TAP.2015.2415516

    16. Sajuyigbe, S., et al., "Wide angle impedance matching metamaterials for waveguide-fed phased-array antennas," IET Microw. Antennas Propag., Vol. 4, No. 8, 1063-1072, Aug. 2010.
    doi:10.1049/iet-map.2009.0543

    17. Cameron, T. R. and V. George, "Eleftheriades analysis and characterization of a wide-angle impedance matching metasurface for dipole phased arrays," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 3928-3938, Sept. 2015.
    doi:10.1109/TAP.2015.2448231

    18. Cameron, T. R. and V. George, "Experimental validation of a wideband metasurface for wide-angle scanning leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 10, 5245-5256, Oct. 2017.
    doi:10.1109/TAP.2017.2735454

    19. Jiang, Z. H., J. A. Bossard, X. Wang, and D. H. Werner, "Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm," J. Appl. Phys., Vol. 109, No. 1, 013515, Jan. 2011.
    doi:10.1063/1.3530849

    20. Zou, W.-M., S.-W. Qu, and S. W. Yang, "Wideband wide-scanning phased array in triangular lattice with electromagnetic band-gap structures," IEEE Trans. Antennas Propag., Vol. 18, No. 3, 422-426, Mar. 2019.
    doi:10.1109/LAWP.2019.2893174

    21. Wen, Y.-Q, B.-Z. Wang, and X. Ding, "A wide-angle scanning and low sidelobe level microstrip phased array based on genetic algorithm optimization," IEEE Trans. Antennas Propag., Vol. 64, No. 2, Feb. 2016.
    doi:10.1109/TAP.2015.2507173