Vol. 94

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-07-17

Tapered Antenna Beam with Cosmological Far-off Retrieval on Fracto-Sun Signatures and Surfaces Gaits Approachability

By Riaz A. Soomro, Liguo Sun, and Zipeng Xie
Progress In Electromagnetics Research C, Vol. 94, 103-117, 2019
doi:10.2528/PIERC19041802

Abstract

Space Sensing Models promulgates the channeling sequels of interstellar environs. A fractal array with sun-shaped irregular molds has arisen to solar activities by interchangeably pointing in the direction of sun and off source with beam swapping, whilst weighing the sun's position (psi, phi)-space (phi demarcates the antenna azimuth proportionate to north, psi contours the beam elevation over horizon) and its solid radioactivity hoarded in the antenna's beam width. The research feedback has incidents of solar fluxes and brightness temperatures to depict sun's activity. Phenomenally, nature-space fractals have been crucial quintessence in intuiting sun's after math pertaining to weather and biological sways {Weierstrass C(x,y)} on landscape, swirling with fractal clock underpinning magnetic flipping and irradiance fluctuations at phase vicissitudes have periodically wedged on territory. The remote alliance algorithms with random fractal contours have subsidized paths of self-affine topographic surfaces and space-earth stoichiometry. In this paper, antenna solar scan corollaries at X-band to detect the solar activity on fractal boresight physiognomies of 3-dB HPBW around 0.5° solar diameter with 36° crest atmospheric stray radiations (SLL) rope inpetite sidelobes 60˚ near the core flamboyant region, return loss S11<-10 dB at X/Ku-band on horizontal and vertical tilting bearings have been estimated.

Citation


Riaz A. Soomro, Liguo Sun, and Zipeng Xie, "Tapered Antenna Beam with Cosmological Far-off Retrieval on Fracto-Sun Signatures and Surfaces Gaits Approachability," Progress In Electromagnetics Research C, Vol. 94, 103-117, 2019.
doi:10.2528/PIERC19041802
http://jpier.org/PIERC/pier.php?paper=19041802

References


    1. Bhardwaj, A., T. K. Pant, R. K. Choudhary, D. Nandy, and P. K. Manoharan, "Space weather research: Indian perspective," Space Weather, Vol. 14, 1082-1094, 2016.
    doi:10.1002/2016SW001521

    2. Raulin, J.-P. and A. A. Pacini, "Solar radio Solar radio emissions," Advances in Space Research, Vol. 35, No. 5, 739-754, 2005, ISSN 0273-1177.
    doi:10.1016/j.asr.2005.03.138

    3. Bedingfield, K. L., R. D. Leach, and M. B. Alexander, "Spacecraft system failures and anomalies attributed to the natural space environment," NASA Reference Publication 1390, Marshall Space Flight Center, Aug. 1996.

    4. Sobsey, M., A. Davis, and V. Rullman, "Solar effects on communications," IEEE Transactions on Power Delivery, Vol. 7, No. 2, 460-468, Apr. 1992.
    doi:10.1109/61.127038

    5. Handzo, R., J. M. Forbes, and B. Reinisch, "Ionospheric electron density response to solar flares as viewed by Digisondes," Space Weather, Vol. 12, No. 4, 205-216, Apr. 2014.
    doi:10.1002/2013SW001020

    6. Coates, R. J., H. Frey, G. D. Mead, and J. M. Bosworth, "Space-Age Geodesy: The NASA crustal dynamics project," IEEE Transactions on Geoscience and Remote Sensing, Vol. 23, No. 4, 360-368, Jul. 1985.
    doi:10.1109/TGRS.1985.289425

    7. Bao, L., N. Wang, and F. Gao, "Improvement of data precision and spatial resolution of c GNSS-R altimetry using improved device with external atomic clock," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 2, 207-211, Feb. 2016.
    doi:10.1109/LGRS.2015.2506186

    8. Chen, P., W. Yao, and X. Zhu, "Combination of ground- and space-based data to establish a global ionospheric grid model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 2, 1073-1081, Feb. 2015.
    doi:10.1109/TGRS.2014.2333522

    9. Mao, T., et al., "First ionospheric radio-occultation measurements from GNSS occultation sounder on the Chinese Feng-Yun 3C satellite," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 9, 5044-5053, Sep. 2016.
    doi:10.1109/TGRS.2016.2546978

    10. Foti, G., C. Gommenginger, M. Unwin, P. Jales, J. Tye, and J. Rosello, "An assessment of non-geophysical effects in spaceborne GNSS reflectometry data from the UK TechDemoSat-1 mission," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 10, No. 7, 3418-3429, Jul. 2017.
    doi:10.1109/JSTARS.2017.2674305

    11. Khodabandeh, A. and P. J. G. Teunissen, "Array-aided multifrequency GNSS ionospheric sensing: Estimability and precision analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 10, 5895-5913, Oct. 2016.
    doi:10.1109/TGRS.2016.2574809

    12. Najibi, N., S. Jin, and X. Wu, "Validating the variability of snow accumulation and melting from GPS-reflected signals: Forward modeling," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2646-2654, Jun. 2015.
    doi:10.1109/TAP.2015.2414950

    13. Valdivia, J. A., G. M. Milikh, and K. Papadopoulos, "Model of red sprites due to intracloud fractal lightning discharges," Radio Sci., Vol. 33, No. 6, 1655-1668, 1998.
    doi:10.1029/98RS02201

    14. Baker, R. G. V., "The Sun-Earth connect 2: Modelling patterns of a fractal sun in time and space using the fine structure constant," Physica A: Statistical Mechanics and Its Applications, Vol. 468, 508-531, 2017, ISSN 0378-4371.
    doi:10.1016/j.physa.2016.10.073

    15. Trinh-Van, S., H. B. Kim, G. Kwon, and K. C. Hwang, "Circularly polarized spidron fractal slot antenna arrays for broadband satellite communications in Ku-band," Progress In Electromagnetics Research, Vol. 137, 203-218, 2013.
    doi:10.2528/PIER13010401

    16. Kuzu, S. and N. Akcam, "Array antenna using defected ground structure shaped with fractal form generated by apollonius circle," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1020-1023, 2017.
    doi:10.1109/LAWP.2016.2616944

    17. Siakavara, K., "Hybrid-fractal direct radiating antenna arrays with small number of elements for satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2102-2106, Jun. 2010.
    doi:10.1109/TAP.2010.2046868

    18. Nascetti, A., E. Pittella, P. Teofilatto, and S. Pisa, "High-gain S-band patch antenna system for earth-observation CubeSat satellites," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 434-437, 2015.
    doi:10.1109/LAWP.2014.2366791

    19. Nakayama, J., H. Ogura, and M. Sakata, "A probabilistic theory of electromagnetic scattering from a random rough surface. 1. Horizontal polarization," Radio Sci., Vol. 16, 831-845, 1981.
    doi:10.1029/RS016i005p00831

    20. Rogers, N. C., S. Quegan, J. S. Kim, and K. P. Papathanassiou, "Impacts of ionospheric scintillation on the BIOMASS P-band satellite SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 3, 1856-1868, Mar. 2014.
    doi:10.1109/TGRS.2013.2255880

    21. Dadash, M. S., J. Hasch, P. Chevalier, A. Cathelin, N. Cahoon, and S. P. Voinigescu, "Design of low-power active tags for operation with 77-81-GHz FMCW radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 5377-5388, Dec. 2017.
    doi:10.1109/TMTT.2017.2769079

    22. Shopov, S., M. G. Girma, J. Hasch, N. Cahoon, and S. P. Voinigescu, "Ultralow-power radar sensors for ambient sensing in the {V}-band," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 5401-5410, Dec. 2017.
    doi:10.1109/TMTT.2017.2771261

    23. Berizzi, F. and E. Dalle-Mese, "Fractal analysis of the signal scattered from the sea surface," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 2, 324-338, 1999.
    doi:10.1109/8.761073

    24. Poirier, J.-R., H. Aubert, and D. L. Jaggard, "Lacunarity of rough surfaces from the wavelet analysis of scattering data," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 2130-2136, 2009.
    doi:10.1109/TAP.2009.2016702

    25. Baars, J., "The measurement of large antennas with cosmic radio sources," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 4, 461-474, Jul. 1973.
    doi:10.1109/TAP.1973.1140521

    26. Vuong, X. T. and J. Forsey, "Prediction of sun transit outages in an operational communication satellite system," IEEE Trans. Broadcast., Vol. 29, 121-126, Dec. 1983.
    doi:10.1109/TBC.1983.266502

    27. Liang, D., P. Xu, L. Tsang, Z. Gui, and K. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
    doi:10.2528/PIER09071413

    28. Freiley, A. J., B. L. Conroy, D. J. Hoppe, and A. M. Bhanji, "Design concepts of a 1MW CW X-band transmit/receive system for planetary radar," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 6, 1047-1055, Jun. 1992.
    doi:10.1109/22.141334

    29. Sarabandi, K., E. S. Li, and A. Nashashibi, "Modeling and measurements of scattering from road surfaces at millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 11, 1679-1688, Nov. 1997.
    doi:10.1109/8.650080

    30. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, Feb. 2003.
    doi:10.1109/MAP.2003.1189650

    31. Glatzmaier, G. A., M. Evonuk, and T. M. Rogers, "Differential rotation in giant planets maintained by density-stratified turbulent convection," Geophysical and Astrophysical Fluid Dynamics, Vol. 103, No. 1, 31-51, Feb. 2009.
    doi:10.1080/03091920802221245

    32. Lovejoy, S. and D. Schertzer, "Generalized scale invariance in the atmosphere and fractal models of rain," Wat. Resour. Res., Vol. 21, No. 8, 1233-1250, Aug. 1985.
    doi:10.1029/WR021i008p01233

    33. Shepard, M. K., R. A. Brackett, and R. E. Arvidson, "Self-affine (fractal) topography: Surface parameterization and radar scattering," Journal of Geophysical Research, Vol. 100, No. E6, 11709-11718, Jun. 1995.
    doi:10.1029/95JE00664

    34. Jordan, T. M., M. A. Cooper, D. M. Schroeder, C. N. Williams, J. D. Paden, M. J. Siegert, and J. L. Bamber, "Self-affine subglacial roughness: Consequences for radar scattering and basal water discrimination in northern greenland," Cryosphere, Vol. 11, No. 3, 1247-1264, 2017.
    doi:10.5194/tc-11-1247-2017

    35. Kjerstad, O. K., S. Loset, R. Skjetne, R. A. Skarbo, "An ice-drift estimation algorithm using radar and ship motion measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 56, No. 6, 3007-3019, Jun. 2018.
    doi:10.1109/TGRS.2017.2787996

    36. Rmili, H., D. Oueslati, I. B. Trad, J. M. Floch, A. Dobaie, and R. Mittra, "Investigation of a random-fractal antenna based on a natural tree-leaf geometry," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2084835, 7 pages, 2017.

    37. Rmili, H., O. El Mrabet, J. M. Floc'h, and J. L. Miane, "Study of an electrochemically-deposited 3-D random fractal tree-monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1045-1050, Apr. 2007.
    doi:10.1109/TAP.2007.893392

    38. Biswas, B., R. Ghatak, and D. R. Poddar, "A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6126-6129, Nov. 2017.
    doi:10.1109/TAP.2017.2748361

    39. Shepard, M. K. and B. A. Campbell, "Radar scattering from a self-affine fractal surface: Near-nadir regime," Icarus, Vol. 141, No. 1, 156-171, 1999, ISSN 0019-1035.
    doi:10.1006/icar.1999.6141

    40. Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio, "Fractals and the small perturbation scattering model," Radio Sci., Vol. 34, No. 5, 1043-1054, Sep.-Oct. 1999.
    doi:10.1029/1999RS900053

    41. Iodice, A., A. Natale, and D. Riccio, "Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2156-2163, Apr. 2013.
    doi:10.1109/TAP.2012.2236531

    42. Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio, "Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 9, 1405-1415, Sep. 1999.
    doi:10.1109/8.793320

    43. Jaggard, D. L. and Y. Kim, "Diffraction by band-limited fractal screens," J. Opt. Soc. Am. A, Vol. 4, No. 6, 155-162, 1987.
    doi:10.1364/JOSAA.4.001055

    44. Guo, L. X. and Z. S. Wu, "Fractal model and electromagnetic scattering from time-varying sea surface," Elec. Lett., Vol. 36, No. 21, 1810-1812, Oct. 2000.

    45. Berizzi, F., E. D. Mese, and G. Pinelli, "A two-dimensional fractal model of the sea surface and sea spectrum evaluation," Proc. Inst. Elect. Eng. Int. Radar Conf., Edinburgh, Scotland, 189-193, Oct. 1997.

    46. Lin, N., H. P. Lee, S. P. Lim, and K. S. Lee, "Wave scattering from fractal surfaces," Journal of Modern Optics, Vol. 42, No. 1, 225-241, 1995.
    doi:10.1080/09500349514550181

    47. Wang, J., D. Feng, L. Xu, and W. Hu, "Synthetic aperture radar image modulation using phase-switched screen," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 911-915, May 2018.
    doi:10.1109/LAWP.2018.2823079

    48. Berizzi, F., E. DalleMese, and G. Pinelli, "One-dimensional fractal model of the sea surface," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 146, No. 1, 55-64, Feb. 1999.
    doi:10.1049/ip-rsn:19990259

    49. Mickelson, A. and D. Jaggard, "Electromagnetic wave propagation in almost periodic media," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 1, 34-40, Jan. 1979.
    doi:10.1109/TAP.1979.1142029

    50. Rao, S. K., "Advanced antenna technologies for satellite communications payloads," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1205-1217, Apr. 2015.
    doi:10.1109/TAP.2015.2391283

    51. Jia, Y. Y., L. Tang, C. Li, X. Yuan, and Y. Qian, "Current status and development of remote sensing technology standardization in China," 2012 IEEE International Geoscience and Remote Sensing Symposium, 2775-2777, Munich, 2012.
    doi:10.1109/IGARSS.2012.6350857

    52. Adler-Golden, S. M. and J. R. Slusser, "Comparison of plotting methods for solar radiometer calibration," J. Atmos. Oceanic Technol., Vol. 24, 935-938, 2007.
    doi:10.1175/JTECH2012.1

    53. Marzano, F. S., "Predicting antenna noise temperature due to rain clouds at microwave and millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2022-2031, Jul. 2007.
    doi:10.1109/TAP.2007.900252

    54. ECC Report 243: Wireless video links in the frequency bands 2700-2900 MHz and 2900-3400 MHz, 19, Jan. 2016.

    55. Schwengler, T., "Tower-top low-noise amplifiers for wireless communications," 1998 IEEE Aerospace Conference Proceedings (Cat. No. 98TH8339), Vol. 3, 311-316, Snowmass at Aspen, CO, 1998.

    56. Stutzman, W. and H. Ko, "On the measurement of antenna beamwidth using extraterrestrial radio sources," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 3, 493-495, 1974.
    doi:10.1109/TAP.1974.1140793

    57. De Villiers, D. I. L. and R. Lehmensiek, "Rapid calculation of antenna noise temperature in offset gregorian reflector systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1564-1571, Apr. 2015.
    doi:10.1109/TAP.2015.2399933

    ., "Radio noise," ITU Recommendation, ITU-R P.372-7, 5-9, International Telecommunication Union, Geneva, Switzerland, 2001.

    59. Zhao, Y., A. A. Mouche, B. Chapron, and N. Reul, "Direct comparison between active C-band radar and passive L-band radiometer measurements: Extreme event cases," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 6, 897-901, 2018.
    doi:10.1109/LGRS.2018.2811712

    60. Wait, D. F., "Precision measurement of antenna system noise using radio stars," IEEE Transactions on Instrumentation and Measurement, Vol. 32, No. 1, 110-116, Mar. 1983.
    doi:10.1109/TIM.1983.4315019

    61., "Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link," ITU Recommendation, ITU-R S.1525, 1-3, International Telecommunication Union, Geneva, Switzerland, 2001.

    62. Kuester, D. G., D. A. McGillivray, A. J. Wunderlich, and W. F. Young, "Interference tests at room temperature applied to deployed low-noise receivers," Natl. Inst. Stand. Technol. Tech. Note 1971 (NIST), 1-23, USA, Oct. 2017.

    63. Ellingson, S. W., "Antennas for the next generation of low-frequency radio telescopes," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, 2480-2489, Aug. 2005.
    doi:10.1109/TAP.2005.852281

    64. Hernandez-Pajares, M., A. Garcia-Rigo, J. M. Juan, J. Sanz, E. Monte, and A. Aragon-Angel, "Solar EUV flux rate estimation during mid and strong flares from the ionospheric electron content response signature in GNSS observations," 2013 7th European Conference on Antennas and Propagation (EuCAP), 3675-3678, Gothenburg, 2013.

    65. Ulich, B., J. Davis, P. Rhodes, and J. Hollis, "Absolute brightness temperature measurements at 3.5-mm wavelength," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 3, 367-377, May 1980.
    doi:10.1109/TAP.1980.1142330

    66. Baker, D. N. and L. J. Lanzerotti, "Resource letter SW1: Space weather," American Journal of Physics, Vol. 84, No. 3, 166-180, 2016.
    doi:10.1119/1.4938403

    67. National Geophysical Data Center-Solar Data Services Ottawa/Penticton 2800 MHz Solar Radio Flux, Colorado-USA, [Accessibility]-https://www.ngdc.noaa.gov/stp/solar/solardataservices.html.

    68. Stephen, H., S. Ahmad, and T. C. Piechota, "Land surface brightness temperature modeling using solar insolation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 491-498, Jan. 2010.
    doi:10.1109/TGRS.2009.2026893

    69. Urbarz, H. W., "Brightness temperature of solar active regions determined from drift curves of the sun across a broad antenna main lobe," Nature, Vol. 210, 891-893, May 28, 1966.

    70. Randa, J., D. K. Walker, A. E. Cox, and R. L. Billinger, "Errors resulting from the reflectivity of calibration targets," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 1, 50-58, Jan. 2005.
    doi:10.1109/TGRS.2004.839809

    71. Murk, A., et al., "Low mass calibration target for mm-wave remote sensing instruments," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1547-1556, Apr. 2013.
    doi:10.1109/TAP.2013.2242828