This paper proposes a novel RF MEMS capacitive shunt switch, which is applied in K-band (18~26.5 GHz). The characteristic impedance matching of the RF MEMS switch is achieved by discontinuous coplanar waveguide (DCPW) structure. Two actuation poles are located at the bottom of the fixed-fixed beam, and they are covered with a dielectric layer of SiN. The pole's thickness is less than that of CPW signal, to avoid the phenomenon of dielectric charging betweenthe beam and the pole. The proposed MEMS switch is fabricated on 400 μm-thickness high resistivity silicon, using the MEMS surface micromachining process. Measured results demonstrate that, at K-band, the return loss is better than 22 dB, and the insertion loss and isolation are better than 0.5 and 17 dB, respectively. The on/off switched timeis 168/54 μs when the DC bias voltage is 0/54 V. This proposed MEMS switch provides a solution for K-band communication system applications.
2. Dey, S. and S. K. Koul, "Reliability analysis of Ku-band 5-bit phase shifters using MEMS SP4T and SPDT switches," IEEE Trans. Microwave Theory Tech., Vol. 63, No. 12, 3997-4012, Dec. 2015.
doi:10.1109/TMTT.2015.2491938
3. Tahir, F. A., H. Aubert, and E. Girard, "Equivalent electrical circuit for designing MEMS-controlled reflectarray phase shifters," Progress In Electromagnetics Research, Vol. 100, 1-12, 2010.
doi:10.2528/PIER09112506
4. Daneshmand, M. and R. R. Mansour, "RF MEMS satellite switch matrices," IEEE Microw. Mag., Vol. 12, No. 5, 92-109, Aug. 2011.
doi:10.1109/MMM.2011.941417
5. Jia, S. and F. Zhao, "Design of a MEMS reconfigurable group delay equalizer," Radio Engineering, Vol. 48, No. 4, 208-313, 2018.
6. Rebeiz, G. M., RF MEMS Theory, Design, and Technology, John Wiley & Sons, 2004.
7. Khalichi, B., S. Nikmehr, and A. Pourziad, "Reconfigurable SIW antenna based on RF MEMS switches," Progress In Electromagnetics Research, Vol. 142, 189-205, 2013.
doi:10.2528/PIER13070204
8. Pourziad, A., S. Nikmehr, and H. Veladi, "A novel multi-state integrated RF MEMS switch for reconfigurable antennas applications," Progress In Electromagnetics Research, Vol. 139, 389-406, 2013.
doi:10.2528/PIER13012303
9. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez-Lopez, "An active ring slot with RF MEMS switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.
doi:10.2528/PIER12041207
10. Carty, E., P. Fitzgerald, P. McDaid, B. Stenson, and R. Goggin, "Development of a DC to K-band ultra long on-life RF MEMS switch with integrated driver circuitry," 2016 46th European Microwave Conference (EuMC), 1373-1376, London, 2016.
11. Topalli, K., M. Unlu, H. I. Atasoy, S. Demir, O. A. Civi, and T. Akin, "Empirical formulation of bridge inductance in inductively tuned RF MEMS shunt switches," Progress In Electromagnetics Research, Vol. 97, 343-356, 2009.
doi:10.2528/PIER09092502
12. Persano, A., et al., "K-band capacitive MEMS switches on GaAs substrate: Design, fabrication, and reliability," Microelectron Reliab, Vol. 52, No. 9–10, 2245-2249, 2012.
doi:10.1016/j.microrel.2012.06.008
13. Cohn, M. B., et al., "RF MEMS switches for wide I/O data bus applications," 2013 IEEE International Test Conference (ITC), 1-8, 2013.
14. Yang, H. H., H. Zareie, and G. M. Rebeiz, "A high power stress-gradient resilient RF MEMS capacitive switch," J. Microelectromech Syst., Vol. 24, No. 3, 599-607, 2015.
doi:10.1109/JMEMS.2014.2335173
15. Bakri-Kassem, M. and R. R. Mansour, "High power latching RF MEMS switches," IEEE Trans. Microwave Theory Tech., Vol. 63, No. 1, 222-232, 2015.
doi:10.1109/TMTT.2014.2376932
16. Carty, E., P. Fitzgerald, P. McDaid, B. Stenson, and R. Goggin, "Development of a DC to K-band ultra long on-life RF MEMS switch with integrated driver circuitry," 2016 46th European Microwave Conference (EuMC), 1373-1376, London, 2016.
17. Hamad, E. K. I., A. M. E. Safwat, and A. S. Omar, "A MEMS reconfigurable DGS resonator for K-band applications," J. Microelectromech Syst., Vol. 15, No. 4, 756-762, Aug. 2006.
doi:10.1109/JMEMS.2006.876797
18. Angira, M. and K. Rangra, "Design and investigation of a low insertion loss, broadband, enhanced self and hold down power RF-MEMS switch," Microsyst. Technol., Vol. 21, No. 6, 1173-1178, 2015.
doi:10.1007/s00542-014-2188-6
19. Zareie, H. and G. M. Rebeiz, "High power (> 10W) RF MEMS switched capacitors," 2012 IEEE/MTT-S International Microwave Symposium Digest, 1-3, 2012.
20. Wei, H., Z. Deng, X. Guo, Y. Wang, and H. Yang, "High on/off capacitance ratio RF MEMS capacitive switches," J. Micromech. Microeng., Vol. 27, 055002, 2017.
doi:10.1088/1361-6439/aa64c5
21. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.
22. Malmqvist, R., C. Samuelsson, A. Gustafsson, H. Maher, T. Vaha-Heikkila, and R. Baggen, "A K-band single-chip reconfigurable/multi-functional RF-MEMS switched dual-LNA MMIC," 2012 IEEE/MTT-S International Microwave Symposium Digest, 1-3, Montreal, QC, 2012.
23. Puyal, V., D. Dragomirescu, C. Villeneuve, J. Ruan, P. Pons, and R. Plana, "Frequency scalable model for MEMS capacitive shunt switches at millimeter-wave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 11, 2824-2833, Nov. 2009.
doi:10.1109/TMTT.2009.2032473