Vol. 92

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-05-20

A Dual-Band Planar Quasi Yagi-Uda Antenna with Optimized Gain for LTE Applications

By Manzoor Elahi, Irfanullah, Rizwan Khan, Azremi Abdullah Al-Hadi, Saeeda Usman, and Ping Jack Soh
Progress In Electromagnetics Research C, Vol. 92, 239-250, 2019
doi:10.2528/PIERC19022401

Abstract

A printed Yagi-Uda antenna with two closely-spaced driven dipole elements and truncated ground plane is presented for dual-band operation. It is designed on a low-cost FR4 substrate with a dielectric constant 4.6, loss tangent of 0.02, and thickness of 1.6 mm. The dipole, operating in the lower band (centered at 1.8 GHz), is elliptical-bow-tiein shape with rounded edges, whereas a J-shaped dipole enables its operation in the upper band (centered at 2.6 GHz). A trapezoid-shaped director is employed to achieve maximum gain over the required frequency bands. Measurements indicate that the antenna operates from 1.71 to 1.9 GHz and from 2.5 to 2.7 GHz with |S11| < -10 dB. The behavior of the proposed antenna has been investigated by studying different parameters to achieve the maximum gains of 6 and 7.7 dB in LTE band 3 and band 7, respectively, with optimal size. It is found that the experimental results of the final packaged antenna agree with the simulated ones in terms of reflection coefficients, gain, and radiation patterns.

Citation


Manzoor Elahi, Irfanullah, Rizwan Khan, Azremi Abdullah Al-Hadi, Saeeda Usman, and Ping Jack Soh, "A Dual-Band Planar Quasi Yagi-Uda Antenna with Optimized Gain for LTE Applications," Progress In Electromagnetics Research C, Vol. 92, 239-250, 2019.
doi:10.2528/PIERC19022401
http://jpier.org/PIERC/pier.php?paper=19022401

References


    1. Holma, H., A. Toskala, K. Ranta-Aho, and J. Pirskanen, "High-speed packet access evolution in 3GPP release 7 [Topics in radio communications]," IEEE Communications Magazine, Vol. 45, No. 12, 29-35, 2007.
    doi:10.1109/MCOM.2007.4395362

    2. Mun, B., F. J. Harackiewicz, B. Kim, H. Wi, J. Lee, M. J. Park, and B. Lee, "New configuration of handset MIMO antenna for LTE 700 band applications," International Journal of Antennas and Propagation, Vol. 2013, 6 pages, 2013.

    3. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Millimeter-wave high-gain SIW end-fire bow-tie antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2337-2342, 2015.
    doi:10.1109/TAP.2015.2406916

    4. Sun, M., X. Qing, and Z. N. Chen, "60-GHz end-fire fan-like antennas with wide beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1616-1622, 2013.
    doi:10.1109/TAP.2012.2237153

    5. Pazin, L. and Y. Leviatan, "A compact 60-GHz tapered slot antenna printed on LCP substrate for WPAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 272-275, 2010.
    doi:10.1109/LAWP.2010.2046612

    6. Shao, J., G. Fang, Y. Ji, K. Tan, and H. Yin, "A novel compact tapered-slot antenna for GPR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 972-975, 2013.
    doi:10.1109/LAWP.2013.2276403

    7. Nikolic, N. and A. R. Weily, "Compact E-band planar quasi-Yagi antenna with folded dipole driver," IET Microwaves, Antennas & Propagation, Vol. 4, No. 11, 1728-1734, 2010.
    doi:10.1049/iet-map.2009.0531

    8. Wu, J., Z. Zhao, Z. Nie, and Q. H. Liu, "Bandwidth enhancement of a planar printed quasi-Yagi antenna with size reduction," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 463-467, 2014.
    doi:10.1109/TAP.2013.2287286

    9. Qin, P. Y., A. R. Weily, Y. J. Guo, T. S. Bird, and C. H. Liang, "Frequency reconfigurable quasi- Yagi folded dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2742-2747, 2010.
    doi:10.1109/TAP.2010.2050455

    10. Liu, J. and Q. Xue, "Microstrip magnetic dipole Yagi array antenna with endfire radiation and vertical polarization," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1140-1147, 2013.
    doi:10.1109/TAP.2012.2230239

    11. Cai, R.-N., S. Lin, G.-L. Huang, X.-Y. Zhang, X.-Q. Zhang, W.-B. Zhang, and J.-X. Wang, "Research on a novel Yagi-Uda antenna fed by balanced microstrip line," IEEE China-Japan Joint Microwave Conference Proceedings (CJMW), 1-4, 2011.

    12. Zong, H., H. Gu, H. Li, B. Liu, G. Liu, and Q. Wu, "A novel high-gain quasi-Yagi antenna with a parabolic reflector," 2015 International Symposium IEEE Antennas and Propagation (ISAP), 1-3, 2015.

    13. Farran, M., D. Modotto, S. Boscolo, A. Locatelli, A. D. Capobianco, M. Midrio, and V. Ferrari, "Microstrip-fed quasi-Yagi antennas for WLAN applications,", 384-387, 2014.

    14. Kim, D. O. and C. Y. Kim, "Dual-band quasi-Yagi antenna with split ring resonator directors," Electronics Letters, Vol. 48, No. 14, 809-810, 2012.
    doi:10.1049/el.2012.1567

    15. Steyn, J. M., J. W. Odendaal, and J. Joubert, "Double dipole antenna for dual-band wireless local area networks applications," Microwave and Optical Technology Letters, Vol. 51, No. 9, 2034-2038, 2009.
    doi:10.1002/mop.24540

    16. Jehangir, S. S. and M. S. Sharawi, "A miniaturized dual wide-band loop excited quasi-yagi antenna using a defected ground structure," IEEE 2016 16th Mediterranean Microwave Symposium (MMS), 1-3, 2016.

    17. Zhang, Y. and Z. Li, "A dual-band planar quasi-Yagi antenna with double-dipole driver," IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), 123-125, 2015.

    18. Cheong, P., K. Wu, W. W. Choi, and K. W. Tam, "Yagi-Uda antenna for multiband radar applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1065-1068, 2014.
    doi:10.1109/LAWP.2014.2328991

    19. Ding, Y., Y. C. Jiao, P. Fei, B. Li, and Q. T. Zhang, "Design of a multiband quasi-Yagi-type antenna with CPW-to-CPS transition," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1120-1123, 2011.
    doi:10.1109/LAWP.2011.2170950

    20. Khan, O. M., Z. U. Islam, Q. U. Islam, and F. A. Bhatti, "Multiband high-gain printed Yagi array using square spiral ring metamaterial structures for S-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1100-1103, 2014.
    doi:10.1109/LAWP.2014.2329309

    21. Wu, S. J., C. H. Kang, K. H. Chen, and J. H. Tarng, "A multiband quasi-Yagi type antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 593-596, 2010.
    doi:10.1109/TAP.2010.2041522

    22. Qian, Y. and T. Itoh, "A broadband uniplanar microstrip-to-CPS transition," 1997 Asia-Pacific Microwave Conference Proceedings, APMC’97, 609-612, 1997.
    doi:10.1109/APMC.1997.654615

    23. Han, K. H., B. Lacroix, J. Papapolymerou, and M. Swaminathan, "New microstrip-to-CPS transition for millimeter-wave application," 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), 1052-1057, 2011.
    doi:10.1109/ECTC.2011.5898640

    24. Rizzi, P. A., Microwave Engineering: Passive Circuits, Prentice Hall, 1988.

    25. Mongia, R. K., J. Hong, P. Bhartia, and I. J. Bahl, RF and Microwave Coupled-line Circuits, Artech House, 2007.

    26. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
    doi:10.2528/PIER06012001

    27. Ta, S. X., J. J. Han, H. Choo, and I. Park, "A wideband double dipole quasi-Yagi antenna using a microstrip-slotline transition feed," IEEE International Workshop on Antenna Technology (iWAT), 84-87, 2012.
    doi:10.1109/IWAT.2012.6178404

    28. Chang, D. C., C. B. Chang, and J. C. Liu, "Modified planar quasi-Yagi antenna for WLAN dualband operations," Microwave and Optical Technology Letters, Vol. 46, No. 5, 443-446, 2005.
    doi:10.1002/mop.21012

    29. Berge, L. A., M. T. Reich, and B. D. Braaten, "A compact dual-band bow-tie slot antenna for 900-MHz and 2400-MHz ISM bands," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1385-1388, 2011.
    doi:10.1109/LAWP.2011.2177954

    30. Zhu, L. and K. Wu, "Field-extracted lumped-element models of coplanar stripline circuits and discontinuities for accurate radiofrequency design and optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 4, 1207-1215, 2002.
    doi:10.1109/22.993426

    31. Jehangir, S. S. and M. S. Sharawi, "A miniaturized dual UWB quasi-Yagi based MIMO antenna system using a defected ground structure," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 399-400, Boston, MA, 2018.