Vol. 90

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-01-14

A Novel Dual-Passband Net-Shaped FSS Structure Used for MIMO Antennas

By Zhiwei Liu, Shunli Jie, Haitao Ma, Xiao-Yan Zhang, and Beibei Xing
Progress In Electromagnetics Research C, Vol. 90, 29-39, 2019
doi:10.2528/PIERC18101501

Abstract

A dual-passband frequency selective surface (FSS) is designed in this paper. Two passbands are 2-3.4 GHz and 5.5-6.8 GHz, respectively. It is used as a spatial filter to improve the radiation and scattering performance of an antenna. The structure is combined with two layers. One is metal, and the other is intermediate medium. The requirements of wide-band, polarization-independent, wide incidence angle and miniaturized FSS with a thickness of only 0.0085λ are achieved by parameter optimization. When the FSS is used to improve the proposed microstrip antenna, the relative bandwidth can be increased by 31.4% and 50%, and the peak gain is increased by 2.53 dB and 1.86 dB at 5.8 GHz and 6.4 GHz, respectively. Meanwhile, the maximum RCS reduction of the microstrip antenna is 16 dB. On the other hand, the FSS is able to be applied to a dipole antenna to improve the transmission coefficient and phase. Simulation and measurement results of the transmission coefficient and phase of the antenna are almost the same.

Citation


Zhiwei Liu, Shunli Jie, Haitao Ma, Xiao-Yan Zhang, and Beibei Xing, "A Novel Dual-Passband Net-Shaped FSS Structure Used for MIMO Antennas," Progress In Electromagnetics Research C, Vol. 90, 29-39, 2019.
doi:10.2528/PIERC18101501
http://jpier.org/PIERC/pier.php?paper=18101501

References


    1. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, 1995.

    2. Raspopoulos, M. and S. Stavrou, "Frequency selective buildings through frequency selective surfaces," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 2998-3005, 2011.
    doi:10.1109/TAP.2011.2158779

    3. Kiani, G. I., L. G. Olsson, A. Karlsson, K. P. Esselle, and M. Nilsson, "Cross-dipole bandpass frequency selective surface for energy-saving glass used in buildings," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 520-525, 2011.
    doi:10.1109/TAP.2010.2096382

    4. Ranga, Y., L. Matekovits, S. G. Hay, and T. S. Bird, "An anisotropic impedance surface for dual-band linear-to-circular transmission polarization convertor," International Workshop on Antenna Technology (iWAT), 2013.

    5. Yeo, W., N. K. Nahar, and K. Sertel, "FAR-Ir multiband dual polarization perfect absorber for wide incident angles," Microwave and Optical Technology Letters, Vol. 55, No. 3, 632-636, 2013.
    doi:10.1002/mop.27387

    6. Goussetis, G. and A. P. Feresidis, "Perturbed frequency selective surfaces for multiband high impedance surfaces," IET Microwave Antennas Propagation, Vol. 4, No. 8, 1105-1110, 2010.
    doi:10.1049/iet-map.2009.0586

    7. Campos, A. L. P. S., S. F. C. G. Segundo, R. H. C. Manic, G. A. Neto, and A. G. D. Assunc, "A simple fractal geometry to design multiband frequency selective surfaces," Microwave and Optical Technology Letters, Vol. 54, No. 10, 2321-2325, 2012.
    doi:10.1002/mop.27045

    8. Jamil, A., M. Z. Yusoff, and N. Yahya, "Compact SRR based band stop filter for isolation in WLAN band in MIMO," IEEE Student Conference on Research and Development, 370-373, 2013.

    9. Zhong, J., Y. Huang, G. Wen, H. Sun, O. Gordon, and W. Zhu, "Dual-band negative permittivity metamaterial based on cross circular loop resonator with shorting stubs," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 803-806, 2012.
    doi:10.1109/LAWP.2012.2208172

    10. Miyamaru, F., S. Kubota, and T. Nakanishi, "Transmission properties of double-gap asymmetric split ring resonators in terahertz region," Applied Physics Letters, Vol. 101, No. 5, 051112-1-051112-5, 2011.

    11. Lahiri, B., S. G. McMeekin, and R. M. De La Rue, "Resonance hybridization in nano antenna arrays based on asymmetric split-ring resonators," Applied Physics Letters, Vol. 98, No. 15, 153116-1-153116-3, 2011.
    doi:10.1063/1.3579537

    12. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model," IEEE Antennas Propagation Magazine, Vol. 54, No. 4, 35-48, 2012.
    doi:10.1109/MAP.2012.6309153

    13. Kim, G. and B. Hong, "An object transition flow model of test data set for simulation of RFID applications," IEEE International Conference on e-Business Engineering (ICEBE), 2014.

    14. Huang, H., P. Zhao, P.-Y. Chen, Y. Ren, X. Liu, M. Ferrari, H. Ye, and D. Akinwande, "RFID tag helix antenna sensors for wireless drug dosage monitoring," IEEE Translational Engineering in Health and Medicine, Vol. 2, No. 2, 1700108-1-1700108-8, 2014.

    15. Lazaro, A., A. Ramos, D. Girbau, and R. Villarino, "A novel UWB RFID tag using active frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1155-1164, 2013.
    doi:10.1109/TAP.2012.2228838

    16. Carelli, P., F. Chiarello, S. Cibella, G. A. Di, R. Leoni, M. Ortolani, and G. Torrioli, "A fast terahertz spectrometer based on frequency selective surface filters," Infrared Milli. Terahz. Waves, Vol. 33, No. 3, 505-512, 2012.
    doi:10.1007/s10762-012-9884-z

    17. De Lima E Silva, T. and A. L. P. S. Campos, "Formulation of double screen FSS analysis using Fullwave method," IEEE Microwave Optoelectronics Conference, 512-516, 2012.

    18. Silva, T. D. L. E. and A. L. P. S. Campos, "Formulation of double screen FSS analysis using Fullwave method," IEEE Microwave Optoelectronics Conference, 512-516, 2012.

    19. Majumdar, P., Z. Zhao, and C. Ji, "Equivalent circuit model of multilayer double square loop FSS using vector-fitting," IEEE International Symposium on Antennas and Propagation, 1276-1277, 2015.