Vol. 89

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-01-03

Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber

By Feroza Begum and Pg Emeroylariffion Abas
Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019
doi:10.2528/PIERC18100102

Abstract

This research explores a silica based highly nonlinear photonic crystal fiber of near infrared window; solid silica core photonic crystal fiber is suitable for propagating light towards the near-infrared wavelength region. Full vector finite difference method is used for numerical simulation, by solving the generalized nonlinear Schrödinger equation with the split-step Fourier method to show that the design exhibits high nonlinear coefficient, near zero ultra-flattened dispersion, low dispersion slope and very low confinement losses. It is demonstrated that it is possible to generate high power wide supercontinuum spectrum using 2.5 ps input pulses at 1.06 μm, 1.30 μm and 1.55 μm center wavelengths. It is observed that supercontinuum spectrum is broadened from 960 nm to 1890 nm by considering center wavelengths of 1.06 μm, 1.31 μm, and 1.55 μm into silica based index guiding highly nonlinear photonic crystal fiber. Furthermore, immensely short fiber length of 1 m at center wavelengths of 1.06 μm, 1.31 μm and 1.55 μm is possible using the proposed highly nonlinear photonic crystal fiber. The generated high power wide supercontinuum spectrum is applicable as a laser light source in near infrared band.

Citation


Feroza Begum and Pg Emeroylariffion Abas, "Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber," Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019.
doi:10.2528/PIERC18100102
http://jpier.org/PIERC/pier.php?paper=18100102

References


    1. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, 847-851, 2003.
    doi:10.1038/nature01940

    2. Knight, J. C., T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics Letters, Vol. 21, No. 19, 1547-1549, 1996.
    doi:10.1364/OL.21.001547

    3. Begum, F., Y. Namihira, S. M. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou, "Design and analysis of novel highly nonlinear hexagonal photonic crystal fibers with ultra-flattened chromatic dispersion," Optics Communications, Vol. 282, No. 7, 1416-1421, 2009.
    doi:10.1016/j.optcom.2008.12.005

    4. Begum, F., Y. Namihira, T. Kinjo, and S. Kaijage, "Supercontinuum generation in photonic crystal fibers at 1.06 μm, 1.31 μm and 1.55 μm wavelengths," Electronics Letters, Vol. 46, No. 22, 1518-1520, 2010.
    doi:10.1049/el.2010.2133

    5. Colston, Jr., B. W., U. S. Sathyam, L. B. DaSilva, M. J. Everett, P. Stroeve, and L. L. Otis, "Dental OCT," Opt. Express, Vol. 3, No. 6, 230-238, 1998.
    doi:10.1364/OE.3.000230

    6. Namihira, Y., J. Liu, T. Koga, F. Begum, M. A. Hossain, N. Zou, S. F. Kaijage, Y. Hirako, H. Higa, and M. A. Islam, "Design of highly nonlinear octagonal photonic crystal fiber with near-zero flattened dispersion in 1.31 μm Waveband," Optical Review, Vol. 18, No. 6, 436-440, 2011.
    doi:10.1007/s10043-011-0082-3

    7. Izatt, J. A. and M. A. Choma, Optical Coherence Tomography, 47-72, Professor Dr. Wolfgang Drexler, Professor Dr. James G. Fujimoto, ed., Springer Publisher, 2008.

    8. Saitoh, K., M. Koshiba, T. Hasegawa, and E. Sasaoka, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express, Vol. 12, No. 10, 843-852, 2004.
    doi:10.1364/OPEX.12.002027

    9. Shibata, H., N. Ozaki, T. Yasuda, S. Ohkouchi, N. Ikeda, H. Ohsato, E. Watanabe, Y. Sugimoto, K. Furuki, K. Miyaji, and R. A. Hogg, "Imaging of spectral-domain optical coherence tomography using a superluminescent diode based on InAs quantum dots emitting broadband spectrum with Gaussian-like shape," Japanese Jour. of Appl. Phys., Vol. 54, 04DG07-1-04DG07-5, 2015.

    10. Calmano, T., J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, "Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing," Appl. Phys. B, Vol. 100, 131-135, 2010.
    doi:10.1007/s00340-010-3929-6

    11. Zaytsev, A., C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Opt. Express, Vol. 21, No. 13, 16056-16062, 2013.
    doi:10.1364/OE.21.016056

    12. Aguirre, A. D., N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express, Vol. 14, No. 3, 1145-1160, 2006.
    doi:10.1364/OE.14.001145

    13. Louot, C., B. M. Shalaby, E. Capitaine, S. Hilaire, P. Leproux, D. Pagnoux, and V. Couderc, "Supercontinuum Generation in an Ytterbium-Doped Photonic Crystal Fiber for CARS Spectroscopy," IEEE Photonics Technol. Letters, Vol. 28, No. 19, 2011-2014, 2016.
    doi:10.1109/LPT.2016.2578721

    14. Raj, G. J., R. V. J. Raja, N. Nagarajan, and G. Ramanathan, "Tunable broadband spectrum under the influence of temperature in IR region using CS2 core photonic crystal fiber," Journal of Lightwave Technol., Vol. 34, No. 15, 3503-3509, 2016.
    doi:10.1109/JLT.2016.2571119

    15. Jain, D., R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, "Record power, ultrabroadband supercontinuum source based on highly GeO2 doped silica fiber," Opt. Express, Vol. 24, No. 23, 26667-26677, 2016.
    doi:10.1364/OE.24.026667

    16. Porcel, M. A. G., F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. M. V. D. Slot, C. J. Lee, R. Schmidt, R. Bratschitsch, C. Fallnich, and K.-J. Boller, "Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths," Opt. Express, Vol. 25, No. 2, 1542-1554, 2017.
    doi:10.1364/OE.25.001542

    17. Tarnowski, K., T. Martynkien, P. Mergo, K. Poturaj, G. Sobon, and W. Urbanczyk, "Coherent supercontinuum generation up to 2.2 μm in an all-normal dispersion microstructured silica fiber," Opt. Express, Vol. 24, No. 26, 30523-30536, 2016.
    doi:10.1364/OE.24.030523

    18. Ali, R. A. H., M. F. O. Hameed, and S. S. A. Obayya, "Ultrabroadband supercontinumm generation through photonic crystal fiber with As2S3 chalcogenide core," J. Lightwave Techn., Vol. 34, No. 23, 5423-5430, 2016.
    doi:10.1109/JLT.2016.2615044

    19. Yang, L., B. Zhange, K. Yin, J. Yao, G. Liu, and J. Hou, "0.6–3.2 μm supercontinuum generation in a step-index germanium-core fiber using a 4.4 kW peak-power pump laser," Opt. Express, Vol. 24, No. 12, 12600-12606, 2016.
    doi:10.1364/OE.24.012600

    20. Namihira, Y., M. A. Hossain, T. Koga, M. A. Islam, S. M. A. Razzak, S. F. Kaijage, Y. Hirako, and H. Higa, "Design of highly nonlinear dispersion flattened hexagonal photonic crystal fibers for dental optical coherence tomography applications," Opt. Review, Vol. 19, No. 2, 78-81, 2012.
    doi:10.1007/s10043-012-0016-8

    21. Karim, M. R., H. Ahmad, and B. M. A. Rahman, "All-normal dispersion chalcogenide PCF for ultraflat mid-infrared supercontinuum generation," IEEE Photonics Technology Letters, Vol. 29, No. 21, 1792-1795, 2017.
    doi:10.1109/LPT.2017.2752214

    22. Ahmad, H., M. R. Karim, and B. M. A. Rahman, "Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime," Applied Physics B, Vol. 124, No. 3, Article 47, 2018.

    23. Guo, Z., J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, "Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016.
    doi:10.2528/PIERM15122302

    24. Begum, F., Y. Namihira, T. Kinjo, and S. Kaijage, "Broadband supercontinuum spectrum generated highly nonlinear photonic crystal fiber applicable to medical and optical communication systems," Japanese Journal of Applied Physics, Vol. 50, 092502-092507, 2011.
    doi:10.7567/JJAP.50.092502

    25. Begum, F. and Y. Namihira, "Design of supercontinuum generating photonic crystal fiber at 1.06, 1.31 and 1.55 μm wavelengths for medical imaging and optical transmission systems," Natural Science, Vol. 3, No. 5, 401-407, 2011.
    doi:10.4236/ns.2011.35054

    26. Mohamed, L. F., C. Lynda, and H. Issam, "Supercontinuum generation in silica photonic crystal fiber at 1.3 μm and 1.65 μm wavelengths for optical coherence tomography," Optik, Vol. 152, No. 1, 106-115, 2018.

    27. Poletti, F., V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express, Vol. 13, No. 10, 3728-3736, 2005.
    doi:10.1364/OPEX.13.003728

    28. Shen, L.-P., W.-P. Huang, and S.-S. Jian, "Design of photonic crystal fibers for dispersion-related applications," J. Lightw. Technol., Vol. 21, No. 7, 1644-1651, 2003.
    doi:10.1109/JLT.2003.814397

    29. Zhu, Z. and T. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express, Vol. 10, No. 17, 853-864, 2002.
    doi:10.1364/OE.10.000853

    30. Guo, S., F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express, Vol. 12, No. 15, 3341-3352, 2004.
    doi:10.1364/OPEX.12.003341

    31. Begum, F., Y. Namihira, S. M. A. Razzak, and N. Zou, "Novel Square photonic crystal fibers with ultra-flattened chromatic dispersion and low confinement losses," IEICE Transaction on Electronics, Vol. E90-C, No. 3, 607-612, 2007.
    doi:10.1093/ietele/e90-c.3.607

    32. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, 2003.
    doi:10.1007/978-1-4615-0475-7

    33., Supercontinuum Generation in Optical Fibers, J. M. Dudley and J. R. Taylor (eds.), Cambridge University Press, 2010.

    34. Sellmier, W., "Zur Erklärung der abnormen Farbenfolge im Spektrum einiger Substanzen," Annalen der Physik, Vol. 219, No. 6, 272-282, 1871.
    doi:10.1002/andp.18712190612