A compact multiple input multiple output (MIMO) antenna with WLAN band-notch filtering function for portable wireless ultra-wideband (UWB) systems is proposed in this paper. The overall size of the antenna is 26 x 40 x 0.8 mm3, and it is fabricated on a low-cost FR4 substrate. The antenna comprises two identical planar monopole antenna elements, namely PM1 and PM2, which are fed by a 50-ohm coplanar waveguide. The PM1 and PM2 are positioned perpendicular to each other to minimize the mutual coupling between them. To further reduce the mutual coupling and to increase the impedance bandwidth, a long rectangular strip is protruded from the ground plane between the PM1 and PM2. To create the band-notch characteristics at WLAN band from 5 to 5.9 GHz, an inverted U-shaped slot is etched on the feed line. The simulated and measured results show that the proposed antenna achieves good impedance bandwidth (S11 ≤ -10 dB) from 2.2 to 11.4 GHz and mutual coupling (S21) of < -20 dB. The measured peak gain of 2.4 to 7.5 dBi and radiation efficiency above 90% are obtained except at notch band. The measured envelope correlation coefficient (ECC) of 0.008 in the whole operating band and omnidirectional radiation characteristics demonstrate that the proposed MIMO antenna is a suitable candidate for portable UWB systems.
2. Kaiser, T., Z. Feng, and E. Dimitrov, "An overview of ultra-wide-band systems with MIMO," An overview of ultra-wide-band systems with MIMO, Vol. 97, 285-312, Feb. 2009.
doi:10.1109/TAP.2012.2207361
3. Ben, I. M., L. Talbi, M. Nedil, and K. Hettak, "MIMO-UWB channel characterization within an underground mine gallery," IEEE Trans. Antennas Propagation, Vol. 60, No. 10, 4866-4874, 2012.
doi:10.1109/TIT.2003.810646
4. Zheng, L. and N. C. Tse, "Diversity and multiplexing: A fundamental trade-off in multiple-antenna channels," IEEE Trans. Inf. Theory, Vol. 49, No. 5, 1073-1096, 2003.
5. Yahya, L. S., K. H. Sayidmarie, F. Elmegri, and R. A. Abd-Alhameed, "Arc-shaped monopole antennas with reduced coupling for WLAN and WIMAX applications," Proc. of IEEE 7th International Conference Internet Technologies and Applications (ITA), 218-223, Wrexham, Wales, UK, 2017.
6. Sayidmarie, K. H. and L. S. Yahya, "Double-monopole crescent-shaped antennas with high isolation for WLAN and WIMAX applications," Antenna Fundamentals for Legacy Mobile Applications and Beyond, I. Elfergani, et al., eds., Chap. 3, Springer, 2018.
doi:10.1109/TAP.2013.2263277
7. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable devices in UWB applications," IEEE Trans. Antennas Propagation, Vol. 61, 4257-4264, 2013.
doi:10.1109/LAWP.2009.2037027
8. Zhang, S., Z. N. Ying, J. Xiong, and S. L. He, "Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1279-1282, 2009.
doi:10.1109/LAWP.2015.2423318
9. Luo, C. M., J. S. Hong, and L. L. Zhong, "Isolation enhancement of very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1766-1769, 2015.
doi:10.1109/LAWP.2016.2604344
10. Tao, J. and Q. Feng, "Compact ultrawideband MIMO antenna with half-slot structure," IEEE Antennas Wireless Propag. Lett., Vol. 16, 792-795, 2017.
doi:10.1109/TAP.2010.2096399
11. Zheng, Z. A., Q. X. Chu, and Z. H. Tu, "Compact band-rejected ultrawideband slot antennas inserting with λ/2 and λ/4 resonators," IEEE Trans. Antennas Propagation, Vol. 59, No. 2, 390-397, 2011.
12. Lee, J. M., K. B. Kim, H. K. Ryu, and J. M. Woo, "A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices," IEEE Antennas Wireless Propag. Lett., Vol. 11, 990-993, 2012.
13. Gao, P., S. He, X. Wei, Z. Xu, N. Wang, and Y. Zheng, "Compact printed UWB diversity slot antenna with 5.5-GHz band-notched characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 13, 376-379, 2014.
doi:10.1109/TAP.2015.2406892
14. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas Propagation, Vol. 63, No. 5, 1917-1924, 2015.
15. Sayidmarie, K. H. and T. A. Nagem, "Performance evaluation of band-notch techniques for printed dual band monopole antennas," International Journal of Electromagnetics and Applications, Vol. 3, No. 4, 70-80, 2013.
doi:10.2528/PIERC15022102
16. Majeed, A. H., A. S. Abdullah, K. H. Sayidmarie, R. A. Abd-Alhameed, F. Elmegri, and J. M. Noras, "Compact dielectric resonator antenna with band-notched characteristics for ultraw-ideband applications," Progress In Electromagnetics Research C, Vol. 57, 137-148, 2015.
doi:10.2528/PIERC17042002
17. Tripathi, S., A. Mohan, and S. K. Yadav, "A compact MIMO/diversity antenna with WLAN band-notch characteristics for portable UWB applications," Progress In Electromagnetics Research C, Vol. 77, 29-38, 2017.
doi:10.2528/PIERC17053002
18. Liu, Z., X. Wu, Y. Zhang, P. Ye, Z. Ding, and C. Hu, "Very compact 5.5GHz band-notched UWB-MIMO antennas with high isolation," Progress In Electromagnetics Research C, Vol. 76, 109-118, 2017.
doi:10.1049/el.2015.1056
19. Khan, M. S., A. D. Capobianco, A. Naqvi, M. F. Shafique, B. Ijaz, and B. D. Braaten, "Compact planar UWB MIMO antenna with on-demand WLAN rejection," Electronics Letters, Vol. 51, No. 13, 963-964, 2015.
doi:10.1049/el:20030495
20. Blanch, S., J. Romen, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, 705-707, 2003.