Vol. 87
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-10-13
Theoretical Analysis for Systematic Design of Flexible Broadband Radar Absorbers Using the Least-Square Method
By
Progress In Electromagnetics Research C, Vol. 87, 175-186, 2018
Abstract
By taking into account the facts that thick dielectrics are required for low frequency absorbers, that thick dielectrics are not always flexible, and that targets are not always planar, an efficient tool for the systematic design of flexible broadband radar absorbers using the least-square method is presented in this paper. Two approaches for designing the physical model of the absorber are presented. The first one consists of resistive square loops deposited on top of a dielectric, and the second one consists of metallic square loops associated with lumped resistors. More than 90% of absorption rate is obtained in the required bandwidth for both transverse electric and transverse magnetic polarizations with the two approaches and achieving a performance of operational bandwidth to thickness ratio of 7.69. Finally, the required dimensions of flexible absorbers in some low frequency bands are given in order to show the versatility of the approach.
Citation
Thtreswar Beeharry, Kamardine Selemani, and Habiba Hafdallah Ouslimani, "Theoretical Analysis for Systematic Design of Flexible Broadband Radar Absorbers Using the Least-Square Method," Progress In Electromagnetics Research C, Vol. 87, 175-186, 2018.
doi:10.2528/PIERC18082203
References

1. Emerson, W., "Electromagnetic wave absorbers and anechoic chambers through the years," IEEE Transactions on Antennas Propag., Vol. 21, 484-490, 1973.
doi:10.1109/TAP.1973.1140517

2. Chambers, B. and A. Tennant, "Design of wideband Jaumann radar absorbers with optimum oblique incidence performance," Electron. Lett., Vol. 30, 1530-1532, 1994.
doi:10.1049/el:19941023

3. Munk, B. A., P. Munk, and J. Pryor, "On designing Jaumann and circuit analog absorbers (ca absorbers) for oblique angle of incidence," IEEE Transactions on Antennas Propag., Vol. 55, 186-193, 2007.
doi:10.1109/TAP.2006.888395

4. Chambers, B. and A. Tennant, "Optimised design of Jaumann radar absorbing materials using a genetic algorithm," IEE Proceedings --- Radar, Sonar Navig., Vol. 143, 23-30, 1996.
doi:10.1049/ip-rsn:19960316

5. Chambers, B., "Optimum design of a salisbury screen radar absorber," Electron. Lett., Vol. 30, 1353-1354, 1994.
doi:10.1049/el:19940896

6. Fante, R. L. and M. T. Mccormack, "Reflection properties of the salisbury screen," IEEE Transactions on Antennas Propag., Vol. 36, 1443-1454, 1988.
doi:10.1109/8.8632

7. Chambers, B., "Frequency tuning characteristics of capacitively loaded salisbury screen radar absorber," Electron. Lett., Vol. 30, 1626-1628, 1994.
doi:10.1049/el:19941096

8. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Physics Uspekhi, Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

9. Alitalo, P. and S. Tretyakov, "Electromagnetic cloaking with metamaterials," Mater. Today, Vol. 12, 22-29, 2009.
doi:10.1016/S1369-7021(09)70072-0

10. Landy, N. I., S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Phys. Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

11. Smith, D. R., W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Review Letters, Vol. 84, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184

12. Tennant, A. and B. Chambers, "A single-layer tuneable microwave absorber using an active fss," IEEE Microw. Wirel. Components Lett., Vol. 14, 46-47, 2004.
doi:10.1109/LMWC.2003.820639

13. Zadeh, A. K. and A. Karlsson, "Capacitive circuit method for fast and efficient design of wideband radar absorbers," IEEE Transactions on Antennas Propag., Vol. 57, 2307-2314, 2009.
doi:10.1109/TAP.2009.2024490

14. Jing, L., Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, "Chiral metamirrors for broadband spin-selective absorption," Appl. Phys. Lett., Vol. 110, 231103, 2017.
doi:10.1063/1.4985132

15. Sood, D. and C. C. Tripathi, "Broadband ultrathin low-profile metamaterial microwave absorber," Appl. Phys. A, Vol. 122, 332, 2016.
doi:10.1007/s00339-016-9884-2

16. Beeharry, T., R. Yahiaoui, K. Selemani, and H. H. Ouslimani, "A dual layer broadband radar absorber to minimize electromagnetic interference in radomes," Sci. Reports, Vol. 8, 382, 2018.
doi:10.1038/s41598-017-18859-w

17. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Design, characterisation and fabrication of a broadband polarisation-insensitive multi-layer circuit analogue absorber," IET Microwaves, Antennas and Propag., Vol. 10, 850-855, 2016.
doi:10.1049/iet-map.2015.0653

18. Chen, H., Z. Wang, R. Zhang, H. Wang, S. Lin, F. Yu, and H. O. Moser, "A meta-substrate to enhance the bandwidth of metamaterials," Sci. Reports, Vol. 4, 5264, 2014.
doi:10.1038/srep05264

19. Feng, J., Y. Zhang, P. Wang, and H. Fan, "Oblique incidence performance of radar absorbing honeycombs," Compos. Part B: Eng., Vol. 99, 465-471, 2016.
doi:10.1016/j.compositesb.2016.06.053

20. Jang, T., H. Youn, Y. J. Shin, and L. J. Guo, "Transparent and flexible polarization-independent microwave broadband absorber," Acs Photonics, Vol. 1, 279-284, 2014.
doi:10.1021/ph400172u

21. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

22. Lee, D., N. T. Trung, U.-C. Moon, and S. Lim, "Optimal parameter retrieval for metamaterial absorbers using the least-square method for wide incidence angle insensitivity," Appl. Optics, Vol. 56, 4670-4674, 2017.
doi:10.1364/AO.56.004670

23. Singh, D., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.
doi:10.2528/PIERB11121601

24. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Transactions on Antennas Propag., Vol. 61, 1201-1209, 2013.
doi:10.1109/TAP.2012.2227923

25. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electron. Lett., Vol. 18, 294-296, 1982.
doi:10.1049/el:19820201

26. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

27. Long, C., S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, "Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode," Sci. Reports, Vol. 6, 21431, 2016.
doi:10.1038/srep21431

28. Xiong, H., J.-S. Hong, C.-M. Luo, and L.-L. Zhong, "An ultrathin and broadband metamaterial absorber using multi-layer structures," J. Appl. Phys., Vol. 114, 064109, 2013.
doi:10.1063/1.4818318