Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-11-05

Theoretical Study of the Thermal Distribution in Yb-Doped Double-Clad Fiber Laser by Considering Different Heat Sources

By Maryam Karimi
Progress In Electromagnetics Research C, Vol. 88, 59-76, 2018
doi:10.2528/PIERC18081505

Abstract

Thermal effects limit the gain, quality, and stability of high power fiber lasers and amplifiers. In this paper, different values of heat conductive coefficients at the core, the first and second clad with the complete form of the heat transfer equation are considered. A quartic equation was proposed to determine the temperature at the fiber laser surface. Using the surface temperature value, the temperature can be determined at the longitudinal and radial position of the double clad fiber laser. The different definitions of heat sources which were previously presented in articles is used to describe the heat generation at a double clad high pump power fiber laser condition. The results were compared to each other, and the percentage of each factor in heat generation was calculated.

Citation


Maryam Karimi, "Theoretical Study of the Thermal Distribution in Yb-Doped Double-Clad Fiber Laser by Considering Different Heat Sources," Progress In Electromagnetics Research C, Vol. 88, 59-76, 2018.
doi:10.2528/PIERC18081505
http://jpier.org/PIERC/pier.php?paper=18081505

References


    1. Liao, K. H., A. G. Mordovanakis, B. Hou, G. Chang, M. Rever, G. Mourou, J. Nees, and A. Galvanauskas, "Generation of hard X-rays using an ultrafast fiber laser system," Opt. Express, Vol. 15, 13942-13948, 2007.
    doi:10.1364/OE.15.013942

    2. Kelson, I. and A. Hardy, "Optimization of strongly pumped fiber lasers," J. Ligthwave Technol., Vol. 17, 891-897, 1999.
    doi:10.1109/50.762908

    3. Zervas, M. N. and C. A. Codemard, "High power fiber lasers: A review," IEEE J. Select. Topic. Quant. Electron., Vol. 20, 0904123, 2014.
    doi:10.1109/JSTQE.2014.2321279

    4. Susnjar, P., V. Agrez, and R. Petkovsek, "Photodarkening as a heat source in ytterbium doped fiber amplifiers," Opt. Express, Vol. 26, 6420-642615265-15277, 2018.
    doi:10.1364/OE.26.006420

    5. Engholm, M., L. Norin, C. Hirt, S. T. Fredrich-Thorntonc, K. Petermannc, and G. Huberc, "Quenching processes in Yb lasers correlation to the valence stability of the Yb ion," Proc. of SPIE, Vol. 7193, 71931U-1, 2009.
    doi:10.1117/12.811977

    6. Ward, B., "Theory and modeling of photodarkening induced quasi static degradation in fiber amplifiers," Opt. Express, Vol. 24, 3488-3501, 2016.
    doi:10.1364/OE.24.003488

    7. Ding, M. and P. K. Cheo, "Dependence of ion-pair induced self-pulsing in Er-doped fiber lasers on emission to absorption ratio," IEEE. Photon. Technol. Lett., Vol. 8, 1627-1629, 1996.
    doi:10.1109/68.544699

    8. Huang, L., H. Zhang, X. Wang, and P. Zhou, "Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 C," IEEE Photonics Journal, Vol. 8, 1501407, 2016.

    9. Brown, D. C. and H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quant. Electron., Vol. 37, 207-217, 2001.
    doi:10.1109/3.903070

    10. Oron, R. and A. A. Hardy, "Rayleigh backscattering and amplified spontaneous emission in high-power Ytterbium-doped fiber amplifiers," J. Opt. Soc. Am. B, Vol. 16, 695-801, 1999.
    doi:10.1364/JOSAB.16.000695

    11. Kaushal, H. and G. Kaddoum, "Applications of lasers for tactical military operations," Digital Object Identifier 10.1109/ACCESS, Vol. 5, 20736-20753, 2017.

    12. Dong, L. and B. Samson, Fiber Lasers: Basics, Technology, and Applications, CRC Press, printed on acid-free paper, 2017.

    13. Shao, H., K. Duan, Y. Zhu, H. Yan, H. Yang, and W. Zhao, "Numerical analysis of Ytterbium-doped double-clad fiber lasers based on the temperature-dependent rate equation," Optik, Vol. 124, 4336-4340, 2013.
    doi:10.1016/j.ijleo.2013.02.017

    14. Yang, J., Y. Wang, Y. Tang, and J. Xu, "Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers,", arXiv:1503.07256v1 [physics.optics], 2015.

    15. Baravets, Y., F. Todorov, and P. Honzatko, "High-power thulium-doped fiber laser in an all-fiber configuration," Proceedings of the SPIE, Vol. 10142, id. 101420G 4, 2016.

    16. Wagener, J. L., P. F. Wysocki, M. J. F. Digonnet, H. J. Shaw, and D. J. Digiovanni, "Effects of concentration and clusters in erbium-doped fiber lasers," Opt. Lett., Vol. 18, 2014-2016, 1993.
    doi:10.1364/OL.18.002014

    17. Dawson, J. W., M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express, Vol. 16, 13240-13266, 2008.
    doi:10.1364/OE.16.013240

    18. Yao, T., J. Ji, and J. Nilsson, "Ultra-low quantum-defect heating in Ytterbium-doped aluminosilicate fibers," J. Lightwav. Technol., Vol. 32, 429-434, 2014.
    doi:10.1109/JLT.2013.2290284

    19. Rimington, N. W., S. L. Schieffer, W. Andreas Schroeder, and B. K. Brickeen, "Thermal lens shaping in Brewster gain media: A high-power, diode-pumped Nd:GdVO4 laser," Opt. Express, Vol. 12, 1426-1436, 2004.
    doi:10.1364/OPEX.12.001426

    20. Kuznetsov, M. S., O. L. Antipov, A. A. Fotiadi, and P. Megret, "Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers," Opt. Express, Vol. 21, 22374-22388, 2013.
    doi:10.1364/OE.21.022374

    21. Sabaeian, M. and H. Nadgaran, "Investigation of thermal dispersion and thermally-induced birefringence on high-power double clad Yb:glass fiber laser," International Journal of Optics and Photonics (IJOP), Vol. 2, 25-31, 2008.

    22. Kong, F., J. Xue, R. H. Stolen, and L. Dong, "Direct experimental observation of stimulated thermal Rayleigh scattering with polarization modes in a fiber amplifier," LET Optica, Vol. 3, 975-978, 2016.
    doi:10.1364/OPTICA.3.000975

    23. Kelson, I. and A. A. Hardy, "Strongly pumped fiber lasers," IEEE J. Quant. Electron., Vol. 34, 1570-1577, 1998.
    doi:10.1109/3.709573

    24. Xiao, L., P. Yan, M. Gong, W. Wei, and P. Ou, "An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss," Opt. Commun., Vol. 230, 401-410, 2004.
    doi:10.1016/j.optcom.2003.11.017

    25. Hardy, A., "Signal amplification in strongly pumped fiber amplifiers," IEEE. J. Quant. Electron., Vol. 33, 307-313, 1997.
    doi:10.1109/3.555997

    26. Karimi, M. and A. H. Farahbod, "Improved shooting algorithm using answer ranges definition to design doped optical fiber laser," Opt. Commun., Vol. 324, 212-220, 2014.
    doi:10.1016/j.optcom.2014.03.013

    27. Hu, X., T. Ning, L. Pei, and W. Jian, "Novel shooting method with simple control strategy for fiber lasers," Optik, Vol. 125, 1975-1979, 2014.
    doi:10.1016/j.ijleo.2013.09.077

    28. Luo, Z., C. Ye, G. Sun, Z. Cai, M. Si, and Q. Li, "Simplified analytic solutions and a novel fast algorithm for Yb3+-doped double-clad fiber lasers," Opt. Commun., Vol. 277, 118-124, 2007.
    doi:10.1016/j.optcom.2007.03.053

    29. Digonnet, M. J. F., "Theory of superfluorescent fiber lasers," J. Lightwave Technol., Vol. 4, 1631-1639, 1986.
    doi:10.1109/JLT.1986.1074661

    30. Desurvire, E., Erbium Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994.

    31. Karimi, M., N. Granpayeh, and M. K. Moravvej Farshi, "Analysis and design of the dye doped polymer optical fiber amplifiers," Appl. Physics B, Vol. 78, 387-396, 2004.
    doi:10.1007/s00340-003-1390-5

    32. Brunet, F., Y. Taillon, P. Galarneau, and S. Larochelle, "Practical design of double-clad Ytterbium-doped fiber amplifiers using Giles parameters," IEEE J. Quant. Electron., Vol. 40, 1294-1300, 2004.
    doi:10.1109/JQE.2004.833223

    33. Yan, P., X. Wang, Y. Huang, C. Fu, J. Sun, Q. Xiao, D. Li, and M. Gong, "Fiber core mode leakage induced by refractive index variation in high-power fiber laser," Chin. Phys. B, Vol. 26, 034205, 2017.
    doi:10.1088/1674-1056/26/3/034205

    34. Agrawal, G. P., Fiber-optic Communication Systems, 3rd Ed., A John Wiley & Sons, Inc., 2002.
    doi:10.1002/0471221147

    35. Karimi, M., "Optimization of core size in erbium doped holey fiber amplifiers," Optik, Vol. 125, 2780-2783, 2014.
    doi:10.1016/j.ijleo.2013.11.054

    36. Prudenzano, F., "Erbium-doped hole-assisted optical fiber amplifier: Design and optimization," J. Ligthwave Technol., Vol. 23, 330-340, 2005.
    doi:10.1109/JLT.2004.838808

    37. Marcuse, D., "Loss analysis of single-mode fiber splices," The Bell System Technology Journal, Vol. 56, 703-718, 1977.
    doi:10.1002/j.1538-7305.1977.tb00534.x

    38. Leproux, P. and S. Fevrier, "Modeling and optimization of double-clad fiber amplifiers using chaotic propagation of the pump," Optical Fiber Technol., Vol. 6, 324-339, 2001.
    doi:10.1006/ofte.2001.0361

    39. Kouznetsov, D. and J. V. Moloney, "Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser," IEEE J. Quant. Electron., Vol. 39, 1452-1461, 2003.
    doi:10.1109/JQE.2003.818311

    40. Quintela, M. A., C. Lavin, M. Lomer, A. Quintela, and J. M. Lopez-Higuera, "Superfluorescent erbium doped fiber optic sources comparative study," Proc. of SPIE, Vol. 5952, 1-10, 2005.

    41. Casperson, L. W. and A. Yariv, "Spectral narrowing in high-gain lasers," IEEE J. Quantum. Electron., Vol. 8, 80, 1972.
    doi:10.1109/JQE.1972.1076944

    42. Xiao, L., P. Yan, M. Gong, W. Wei, and P. Ou, "An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss," Opt. Commun., Vol. 230, 401-410, 2004.
    doi:10.1016/j.optcom.2003.11.017

    43. Pask, H. M., R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: Versatile sources for the 1-1.2 pm region," IEEE J. Selected Top. in Quant. Electron., Vol. 1, 2-13, 1995.
    doi:10.1109/2944.468377

    44. Lim, C. and Y. Izawa, "Modeling of end-pumped CW quasi-three-level lasers," IEEE J. Quant. Electron., Vol. 38, 306-311, 2002.
    doi:10.1109/3.985572

    45. Kong, F., C. Dunn, J. Parsons, M. T. Kalichevsky-Dong, T. W. Hawkins, M. Jones, and L. Dong, "Large-mode-area fibers operating near singlemode regime," Opt. Express, Vol. 24, 10295-10301, 2016.
    doi:10.1364/OE.24.010295

    46. Wielandy, S., "Implications of higher-order mode content in large mode area fibers with good beam quality," Opt. Express, Vol. 15, 15402-15409, 2016.
    doi:10.1364/OE.15.015402

    47. Snitzer, E., H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double-clad, offset core Nd fiber laser," The Opt. Fiber Commun. Conf., New Orleans, LA, PD5, 1988.

    48. Jauregui, C., H. J. Otto, S. Breitkopf, J. Limpert, and A. T¨unnermann, "Optimizing the mode instability threshold of high-power fiber laser systems," Proc. of SPIE, Fiber Lasers XIII: Technology, Systems, and Applications, Vol. 9728, 97280B, 2015.

    49. Otto, H. J., N. Modsching, C. Jauregui, J. Limpert, and A. T¨unnermann, "Impact of photodarkening on the mode instability threshold," Opt. Express, Vol. 23, 15265-15277, 2015.
    doi:10.1364/OE.23.015265

    50. Jauregui, C., H. J. Ottoa, C. Stihler, J. Limpert, and A. Tunnermann, "The impact of core co-dopants on the mode instability threshold of high-power fiber laser systems," Proc. of SPIE, Fiber Lasers XIV: Technology and Systems, Vol. 10083, 100830N, 2017.

    51. Li, J., K. Duan, Y. Wang, X. Cao, W. Zhao, Y. Guo, and X. Lin, "Theoretical analysis of the heat dissipation mechanism in Yb3+-doped double-clad fiber lasers," J. Modern Optic, Vol. 55, 459-471, 2008.
    doi:10.1080/09500340701477784

    52. Yan, P., A. Xu, and M. Gong, "Numerical analysis of temperature distributions in Yb-doped double-clad fiber lasers with consideration of radiative heat transfer," Opt. Engin., Vol. 45, 124201, 2006.
    doi:10.1117/1.2402934

    53. Davis, M. K., M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Lightwave Technol., Vol. 16, 1013-1013, 1998.
    doi:10.1109/50.681458

    54. Li, J., Y. Chen, M. Chen, H. Chen, X. Jin, Y. Yang, Z. Dai, and Y. Liu, "Theoretical analysis and heat dissipation of mid-infrared chalcogenide fiber Raman laser," Opt. Commun., Vol. 284, 1278-1283, 2011.
    doi:10.1016/j.optcom.2010.10.062

    55. Lapointe, M. A., S. Chatigny, M. Pich´e, M. C. Skaff, and J. N. Maran, "Thermal effects in high-power CW fiber lasers," Proc. SPIE Fiber Lasers VI: Technology, Systems, and Applications, Vol. 7195, 1U, 2009.

    56. Jauregui, C., H. J. Otto, F. Stutzki, J. Limpert, and A. Tunnermann, "Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening," Opt. Express, Vol. 23, 20203-20218, 2015.
    doi:10.1364/OE.23.020203

    57. Lood, F. and N. P. Kherani, "Influence of luminescent material properties on stimulated emission luminescent solar concentrators (SELSCs) using a 4-level system," Opt. Express, Vol. 25, A1023, 2017.
    doi:10.1364/OE.25.0A1023

    58. Ward, B., "Theory and modeling of photodarkening induced quasi static degradation in fiber amplifiers," Opt. Express, Vol. 24, 3488-3501, 2016.
    doi:10.1364/OE.24.003488

    59. Kuznetsov, M. S., O. L. Antipov, A. A. Fotiadi, and P. Megret, "Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers," Opt. Express, Vol. 21, 22374-22388, 2013.
    doi:10.1364/OE.21.022374

    60. Abouricha, M., A. Boulezhar, and N. Habiballah, "The comparative study of the temperature distribution of fiber laser with different pump schemes," O. J. Metal, Vol. 3, 64-71, 2013.
    doi:10.4236/ojmetal.2013.34010

    61. Naderi, S., I. Dajani, T. Madden, and C. Robin, "Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations," Opt. Express, Vol. 21, 16111-16129, 2013.
    doi:10.1364/OE.21.016111

    62. Hansen, K. R., T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, "Theoretical analysis of mode instability in high-power fiber amplifiers," Opt. Express, Vol. 21, 1944-1971, 2013.
    doi:10.1364/OE.21.001944

    63. Smith, A. V. and J. J. Smith, "Increasing mode instability thresholds of fiber amplifiers by gain saturation," Opt. Express, Vol. 21, 15168-15182, 2013.
    doi:10.1364/OE.21.015168

    64. Ward, B., C. Robin, and I. Dajani, "Origin of thermal modal instabilities in large mode area fiber amplifiers," Opt. Express, Vol. 2, 11407-11422, 2012.
    doi:10.1364/OE.20.011407

    65. Ward, B. G., "Accurate modeling of rod-type photonic crystal fiber amplifiers," Proc. of SPIE, Vol. 9728, 97280F-1, 2015.

    66. Tao, R., P. Ma, X. Wang, P. Zhou, and Z. Liu, "1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities," Photon. Res., Vol. 3, 86-93, 2015.
    doi:10.1364/PRJ.3.000086

    67. Tao, R., X. Wang, P. Zhou, and Z. Liu, "Seed power dependence of mode instabilities in high power fiber amplifiers," J. Opt., 103667.R1, 2017.

    68. Lægsgaard, J., "Static thermo-optic instability indouble-pass fiber amplifiers," Opt. Express, Vol. 24, 13429-13443, 2016.
    doi:10.1364/OE.24.013429

    69. Gong, M., Y. Yuan, C. Li, P. Yan, H. Zhang, and S. Liao, "Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers," Opt. Express, Vol. 15, 3236-3246, 2007.
    doi:10.1364/OE.15.003236

    70. Mohammed, Z., H. Saghafifar, and M. Soltanolkotabi, "An approximate analytical model for temperature and power distribution in high power Yb-doped double clad fiber lasers," Laser Phys., Vol. 24, 115107, 2014.
    doi:10.1088/1054-660X/24/11/115107

    71. Sabaeian, M., H. Nadgaran, M. De Sario, L. Mescia, and F. Prudenzano, "Thermal effects on double clad octagonal Yb:glass fiber laser," Optical Materials, Vol. 31, 1300-1305, 2009.
    doi:10.1016/j.optmat.2008.10.034

    72. Neumark, S., Solution of Cubic and Quartic Equations, 1st Ed., Pergam on Press, Oxford, London, 1965.

    73. Kelson, I. and A. Hardy, "Optimization of strongly pumped fiber lasers," J. of Ligthwave Technol., Vol. 17, 891-897, 1999.
    doi:10.1109/50.762908

    74. Pask, H. M., R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 pm region," IEEE J. of Quant. Electron., Vol. 1, 2-13, 1995.
    doi:10.1109/2944.468377

    75. Fan, Y., B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, "Thermal effects in kilowatt all-fiber MOPA," Opt. Express, Vol. 19, 15162-15172, 2011.
    doi:10.1364/OE.19.015162