Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-10-31

A Semi-Analytical Approach for Fast Design of Microwave Metasheets with Circular Metal Rings on Dielectric Substrates

By Ezgi Öziş, Andrey V. Osipov, and Thomas F. Eibert
Progress In Electromagnetics Research C, Vol. 88, 13-25, 2018
doi:10.2528/PIERC18070404

Abstract

Metasheets are ultra-thin sheets built from sub-wavelength resonators designed in order to achieve certain frequency-dependent transmission behaviour. A semi-analytical approach based on an equivalent circuit representation is proposed to calculate the microwave transmission through metasheets which consist of 2D periodic arrays of planar circular metal rings with and without substrate. The electromagnetic response of the metasheet can be controlled by changing the radius and periodicity of the circular rings. In the semi-analytical approach, the equations for impedances of the equivalent circuit are parameterized and fitted to match the values of transmission coefficients obtained by full-wave simulations at selected frequency points. Such an approach permits an optimization of the metasheet design with a very small number of full-wave numerical simulations. It is shown that the results of the semi-analytical approach match well with full-wave simulations and measurements within a reasonable range of radius and periodicity values.

Citation


Ezgi Öziş, Andrey V. Osipov, and Thomas F. Eibert, "A Semi-Analytical Approach for Fast Design of Microwave Metasheets with Circular Metal Rings on Dielectric Substrates," Progress In Electromagnetics Research C, Vol. 88, 13-25, 2018.
doi:10.2528/PIERC18070404
http://jpier.org/PIERC/pier.php?paper=18070404

References


    1. Ozis, E., A. Osipov, and T. F. Eibert, "Metamaterials for microwave radomes and the concept of a metaradome: Review of the literature," International Journal of Antennas and Propagation, Vol. 2017, No. 1356108, 1-13, 2017.
    doi:10.1155/2017/1356108

    2. Michael, P. J. and P. M. Corcoran, "Asymmetric radome for phased antenna arrays,", Patent US, No. 20100039346 A1, February 18, 2010.

    3. Tretyakov, S. A., "Metasurfaces for general transformations of electromagnetic fields," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, No. 2049, 2049, 2015.
    doi:10.1098/rsta.2014.0362

    4. Alu, A. and N. Engheta, "Enabling a new degree of wave control with metamaterials: A personal perspective," Journal of Optics, Special Issue on History of Metamaterials, Vol. 19, No. 084008, 1-10, 2017.

    5. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions Microwave Theory and Techniques, Vol. 55, No. 12, 2865-2873, December 2007.
    doi:10.1109/TMTT.2007.909611

    6. Zedler, M., C. Caloz, and P. Russer, "A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2930-2941, December 2007.
    doi:10.1109/TMTT.2007.909608

    7. Zhu, B. O., K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, "Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface," Scientific Reports, Vol. 4, No. 4971, 1-7, May 2014.

    8. Schelkunoff, S. A., "The impedance concept and its application to problems of reflection, refraction, shielding and power absorption," The Bell System Technical Journal, Vol. 17, No. 1, 17-48, 1938.
    doi:10.1002/j.1538-7305.1938.tb00774.x

    9. Schelkunoff, S. A., "Some equivalence theorems of electromagnetics and their application to radiation problems," The Bell System Technical Journal, Vol. 15, 92-112, 1936.
    doi:10.1002/j.1538-7305.1936.tb00720.x

    10. Labate, G., A. Alu, and L. Matekovits, "Surface admittance equivalence principle for non-radiating and cloaking problems," Physical Review A, Vol. 95, No. 063841, 1-7, 2017.

    11. Volakis, J. L., T. F. Eibert, D. S. Filipovic, Y. E. Erdemli, and E. Topsakal, "Hybrid finite element methods for array and FSS analysis using multiresolution elements and fast integral techniques," Electromagnetics, Vol. 22, No. 4, 297-313, May 2002.
    doi:10.1080/02726340290083905

    12. Eibert, T. F. and J. L. Volakis, "Adaptive integral method for hybrid FE/BI modelling of 3-D doubly periodic structures," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 146, No. 1, 17-22, February 1999.
    doi:10.1049/ip-map:19990388

    13. Diest, K., L. A. Sweatlock, and D. E. Marthaler, "Metamaterials design using gradient-free numerical optimization," Journal of Applied Physics, Vol. 108, No. 084303, 1-5, 2010.

    14. Paul, J., V. Podlozny, and C. Christopoulos, "The use of digital filtering techniques for the simulation of fine features in EMC problems solved in the time domain," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 238-244, May 2003.
    doi:10.1109/TEMC.2003.810810

    15. Christopoulos, C., The Transmission-line Modeling Method (TLM), IEEE Press, New York, 1995.
    doi:10.1109/9780470546659

    16. Doncov, N., A. J. Wlodarczyk, R. Scaramuzza, and V. Trenkic, "Compact TLM for air-vents," Electronics Letters, Vol. 38, No. 16, 887-889, August 2002.
    doi:10.1049/el:20020614

    17. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, 88-97, May 1981.
    doi:10.1109/TEMC.1981.303899

    18. Duffy, A. P., et al., "New methods for accurate modelling of wires using TLM," Electronic Letters, Vol. 29, No. 2, 224-226, January 1993.
    doi:10.1049/el:19930153

    19. Trenkic, V., C. Christopoulos, and T. A. Benson, "Simple and elegant formulation of scattering in TLM nodes," Electronics Letters, Vol. 29, No. 18, 1651-1652, September 1993.
    doi:10.1049/el:19931099

    20. Anderson, I., "On the theory of self-resonant grids," The Bell System Technical Journal, Vol. 54, No. 10, 1725-1731, December 1975.
    doi:10.1002/j.1538-7305.1975.tb03551.x

    21. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
    doi:10.1049/el:19820201

    22. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley and Sons, New York, 2000.
    doi:10.1002/0471723770

    23. Labidi, M. and F. Choubani, "Electrical equivalent model of meta-materials based on circular SRR," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 6, 909-913, September 2016.
    doi:10.1017/S1759078715000604

    24. Example-Endfire antenna array, Ansoft High Frequency Structure Simulator v11 User’s Guide, , [online], available: http://data.eefocus.com/myspace/33/165109/bbs/2010-01-04/1262563740 b4171 dec.pdf, [Accessed February 2018].

    25. Workshop 9-1: Unit Cell Analysis (Infinite Array), Ansys, , May 2015, [online], http://www.cadfamily.com/download-pdf/ANSYS-HFSS/ANSYS_HFSS_Antenna_W09_1_Unit_Cell.pdf, [Accessed 2018].

    26. Rogers Corporation, [online], , available: https://www.rogerscorp.com/acs/producttypes/6/RTduroid-Laminates.aspx, [Accessed 2018].

    27. Analyzing Advances in Antenna Materials, [online], , available: http://www.rogerscorp.com/documents/1796/acm/articles/analyzing-advances-in-antenna-materials.pdf. [Accessed 2018].

    28. Collin, R. E., Foundations for Microwave Engineering, Mc-Graw-Hill, 1992.

    29. Orfanidis, S. J., Electromagnetic Waves and Antennas, http://www.ece.rutgers.edu/∼orfanidi/ewa/, [Accessed 2018], August 2016.

    30. Callaghan, P., E. A. Parker, and R. J. Langley, "Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces," IEE Proceedings --- H, Microwaves, Antennas and Propagation, Vol. 138, No. 5, October 1991.

    31. Coonrod, J., "Understanding when to use FR4 or high frequency laminates," On Board Technology (www.Onboard-Technology.com), 26-30, September 2011.