Vol. 87
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-09-09
An Ultrathin Five-Band Polarization Insensitive Metamaterial Absorber Having Hexagonal Array of 2D-Bravais-Lattice
By
Progress In Electromagnetics Research C, Vol. 87, 13-23, 2018
Abstract
In this paper, a novel ultrathin five-band polarization insensitive Metamaterial Absorber (MA) is proposed. The proposed structure consists of a periodic array of six arrows with two concentric hexagonal rings, having novel hexagonal 2D-bravais lattices on a grounded FR-4 dielectric substrate (εr = 4.25, loss-tangent tanδ = 0.02). The simulated result shows five discrete absorption peaks. The near unity absorption occurs at 2.7, 6.9, 7.3, 13.6 and 16.9 GHz with peak absorptivity of 88.99, 94.45, 87.58, 93.06 and 90.42% respectively. The proposed absorber is ultrathin with thickness of 0.056λ0 corresponding to the highest frequency of absorption. In order to analyze the absorption mechanism of the structure electromagnetic parameters such as effective permittivity (εeff) and effective permeability μeff) are retrieved and plotted. Wave absorption phenomena are explained by comparative tabulation of real and imaginary parts of electromagnetic parameters. Absorption is further explained by the characteristics impedance and surface current distribution. The structure, being a six-fold symmetric, has been found to be polarization-insensitive under normal incidence. For the oblique incidence of waves, it also achieves high values of absorption for both TE and TM polarizations. The proposed absorber is fabricated, and scattering parameters are measured. Simulated and measured results are in close agreement. Performance of the proposed MA is further investigated by calculating Fractional Bandwidth (FBW). This absorber can find its applications in phase imaging, photo-detector, hyper-spectral imaging, micro-bolometer, spectroscopic detection, surveillance radar and other defence applications.
Citation
Prakash Ranjan, Arvind Choubey, Santosh Kumar Mahto, and Rashmi Sinha, "An Ultrathin Five-Band Polarization Insensitive Metamaterial Absorber Having Hexagonal Array of 2D-Bravais-Lattice," Progress In Electromagnetics Research C, Vol. 87, 13-23, 2018.
doi:10.2528/PIERC18061907
References

1. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, May 1, 2000.
doi:10.1103/PhysRevLett.84.4184

2. Alu, A. and N. Engheta, "Dispersion characteristics of metamaterial cloaking structures," Electromagnetics, Vol. 28, No. 7, 464-475, Sep. 25, 2008.
doi:10.1080/02726340802322502

3. Zhao, Y. J., B. C. Zhou, Z. K. Zhang, R. Zhang, and B. Y. Li, "A compact tunable metamaterial filter based on split-ring resonators," Optoelectronics Letters, Vol. 13, No. 2, 120-122, Mar. 1, 2017.
doi:10.1007/s11801-017-7008-7

4. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna’s gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301

5. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, May 21, 2008.
doi:10.1103/PhysRevLett.100.207402

6. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

7. Ramya, S. and I. S. Rao, "Design of polarization-insensitive dual band metamaterial absorber," Progress In Electromagnetics Research M, Vol. 50, 23-31, 2016.
doi:10.2528/PIERM16070501

8. Kaur, K. P., T. K. Upadhyaya, and M. Palandoken, "Dual-band polarization-insensitive meta-material inspired microwave absorber for LTE-band applications," Progress In Electromagnetics Research C, Vol. 77, 91-100, 2017.
doi:10.2528/PIERC17060502

9. Khusboo, K., N. Mishra, and R. K. Chaudhary, "Wide-angle polarization independent triple band absorber based on metamaterial structure for microwave frequency application," Progress In Electromagnetics Research C, Vol. 76, 119-127, 2017.

10. Zhai, H., C. Zhan, L. Liu, and C. Liang, "A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 6, 774-785, Apr. 13, 2015.
doi:10.1080/09205071.2015.1024335

11. Ayop, O. B., M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, and R. Dewan, "Triple band circular ring-shaped metamaterial absorber for X-band applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
doi:10.2528/PIERM14052402

12. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
doi:10.2528/PIERM12102101

13. Luo, H. and Y. Z. Cheng, "Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure," Journal of Electronic Materials, Vol. 47, No. 1, 323-328, 2018.
doi:10.1007/s11664-017-5770-8

14. Bhattacharyya, S., S. Ghosh, and K. Vaibhav Srivastava, "Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band," Journal of Applied Physics, Vol. 114, No. 9, 094514, Sep. 7, 2013.
doi:10.1063/1.4820569

15. Chaurasiya, D., S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, "An ultrathin quadband polarization-insensitive wide-angle metamaterial absorber," Microwave and Optical Technology Letters, Vol. 57, No. 3, 697-702, Mar. 1, 2015.
doi:10.1002/mop.28928

16. Zheng, D., Y. Cheng, D. Cheng, Y. Nie, and R. Z. Gong, "Four-band polarization-insensitive metamaterial absorber based on flower-shaped structures," Progress In Electromagnetics Research, Vol. 142, 221-229, 2013.
doi:10.2528/PIER13052607

17. Wang, W., M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, "Ultra-thin quadri-band metamaterial absorber based on spiral structure," Applied Physics A, Vol. 118, No. 2, 443-447, Feb. 1, 2015.
doi:10.1007/s00339-014-8766-8

18. Mao, Z., S. Liu, B. Bian, B. Wang, B. Ma, L. Chen, and J. Xu, "Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures," Journal of Applied Physics, Vol. 115, No. 20, 204505, May 28, 2014.
doi:10.1063/1.4878697

19. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E,, Vol. 71, No. 3, 036617, Mar. 22, 2005.
doi:10.1103/PhysRevE.71.036617