Vol. 85
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-06-24
Miniaturized Beam-Switching Array Antenna with MIMO Direct Conversion Transceiver (MIMO-DCT) System for LTE and Wireless Communication Applications
By
Progress In Electromagnetics Research C, Vol. 85, 9-23, 2018
Abstract
Due to the increase in the data rates for modern wireless communications and recent generation standards, the switched beam approach and multiple-input multiple-output (MIMO) direct conversion transceiver (MIMO-DCT) have become promising techniques to satisfy these requirements. The combining of switched beam and MIMO-DCT through the use of multiple antenna elements has been investigated to overcome the high complexity and high spatial directivity of the conventional system. In this paper, a low cost miniaturized beam-switching array antenna with a MIMO-DCT system has been proposed, designed and analysed. The entire proposed system structure has two design stages. The first is the design of MIMO-DCT via the integration of microstrip antenna element, hybrid coupler, Wilkinson power divider and single-pole double-throw (SPDT) transmitter/receiver (T/R) switch. The second has the switched beam array antenna design using a Butler matrix feeding network and four distributed subarrays (DSs) of the MIMO-DCT. The entire proposed design structure components have been optimized using a commercial software to evaluate each component and meet the desired performance. The final proposed two-stage design has been fabricated, integrated, and the radiation characteristics have been demonstrated, using the Agilent FieldFox network analyser, to meet the requirements for LTE and wireless communication applications.
Citation
Yasser M. Madany, Roshdy A. Abdelrassoul, and Nahla Mohamed, "Miniaturized Beam-Switching Array Antenna with MIMO Direct Conversion Transceiver (MIMO-DCT) System for LTE and Wireless Communication Applications," Progress In Electromagnetics Research C, Vol. 85, 9-23, 2018.
doi:10.2528/PIERC18051002
References

1. McTasney, R., D. Grunwald, and D. Sicker, "Low-latency multichannel wireless mesh networks," Proceedings of the 16th Inter. Conf. on Computer Comm. and Networks (ICCCN’2007), 1082-1087, 2007.
doi:10.1109/ICCCN.2007.4317962

2. Madany, Y. M. and A. A. Salama, "Design and analysis of miniaturized integrated antenna with direct conversion transceiver for wireless communications applications," Inter. Conf. on Microwave and Millimeter Wave Technology (ICMMT’2012), 1-4, May 2012.

3. Madany, Y. M., N. E. H. Ismail, and H. A. Hassan, "High-isolation wideband single-pole double-throw (SPDT) transmitter/receiver (T/R) switch with PIN diode for wireless communication applications," IEEE Inter. Symp. on Ant. and Propag. (APS’2013), 1006-1007, July 2013.

4. Palomar, D. P., J. Cioffi, and M. Lagunas, "Joint Tx-Rx beam forming design for multicarrier MIMO channels, A unified framework for convex optimization," IEEE Trans. Signal Process., Vol. 51, No. 9, 2381-2401, 2003.
doi:10.1109/TSP.2003.815393

5. Yin, H., D. Gesbert, M. Filippou, and Y. Liu, "A coordinated approach to channel estimation in large-scale multiple-antenna systems," IEEE Journal on Selected Areas in Communications, Vol. 31, 264-273, 2013.
doi:10.1109/JSAC.2013.130214

6. Sharawi, M. S., S. K. Podilchak, and K. Sarabandi, "Compact millimeter-wave switched-beam antenna arrays for short range communication," Microwave and Optical Technology Letters, Vol. 58, No. 8, 1917-1921, August 2016.
doi:10.1002/mop.29940

7. Tiwari, N. and T. R. Rao, "A switched beam antenna array with Butler matrix network using substrate integrated waveguide technology for 60 GHz radio," ACES Journal, Vol. 31, No. 5, 599-602, May 2016.

8. Tiwari, N. and T. R. Rao, "A switched beam antenna array with Butler matrix network using substrate integrated waveguide technology for 60 GHz wireless communications," International Journal of Electronics and Communications, (AEU), Vol. 70, 850-856, 2016.
doi:10.1016/j.aeue.2016.03.014

9. Erfani, E., E. Moldovan, and S. Tatu, "A 60-GHz multi-beam antenna array design by using MHMICs technology," Microwave and Optical Technology Letters, Vol. 58, No. 8, 1844-1847, August 2016.
doi:10.1002/mop.29926

10. Shastrakar, A. and U. S. Sutar, "Design and simulation of microstrip Butler matrix elements operating at 2.4 GHz for wireless applications," International Journal of Scientific & Engineering Research, Vol. 7, No. 5, 1528-1531, May 2016.

11. Suryana, J., A. Y. Pinangkis, and A. Nursyamsiah, "Design and implementation of 3-D multi-beam antenna and FMCW S-band radar for fire control system," Asian Research Publishing Network (ARPN) Journal of Engineering and Applied Sciences, Vol. 11, No. 5, 3176-3183, March 2016.

12. Hirokawa, J. and D.-H. Kim, "Waveguide short-slot 2D-plane coupler for 2D beam-switching Butler matrix," The 3rd AWAP 2016, 30, January 27-29, 2016.

13. Kalam, S. V. and A. B. Rathi, "Optimum design of 4 × 4 symmetrically structured Butler matrix," International Journal of Scientific Research Engineering & Technology (IJSRET), Vol. 5, No. 1, 31-34, January 2016.

14. Karamzadeh, S. and M. Kartal, "Circularly polarized 1 × 4 square slot array antenna by utilizing compacted modified Butler matrix and branch line coupler," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 2, 146-153, Wiley Periodicals, Inc., February 2016.
doi:10.1002/mmce.20947

15. Madany, Y. M., H. M. Elkamchouchi, and A. A. Salama, "Investigation and design of distributed subarray smart antenna system using 1 × 8 switched Butler matrix for phased-array radar applications," Inter. Conf. on High Speed Intelligent Communication (HSIC’2012), 279-282, May 2012.