Vol. 86

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-08-31

An Efficient Numerical Technique to Calculate the High Frequency Diffracted Fields from the Convex Scatterers with the Fock-Type Integrals

By Yang Yang, Yu Mao Wu, Ya-Qiu Jin, Haijing Zhou, Yang Liu, and Jianli Wang
Progress In Electromagnetics Research C, Vol. 86, 203-215, 2018
doi:10.2528/PIERC18042202

Abstract

High frequency electromagnetic (EM) scattering analysis from the electrically large scatterers is important to the computational electromagnetics community. Meanwhile, the high frequency diffraction technique, like the uniform geometrical theory of diffraction (UTD), is very important when the observation point lies in the transition, shadow and deep shadow regions of the considered scatterer. Furthermore, the diffracted fields arising from the electrically large scatterers via the UTD technique are usually highly oscillatory in nature, which is named as the Fock type integrals with the Airy function and its derivative involved. In this work, we propose a Fourier quadrature method to calculate the Pekeris integrals. Moreover, we first adopt the Fourier quadrature technique to calculate the diffracted fields from the dielectric convex cylinder with impedance boundary conditions, like the creeping wave fields and NU-diffracted wave fields. On invoking the Fourier quadrature method, the results of total scattered fields at the fixed observation points could achieve 1 dB relative errors. Moreover, numerical results demonstrate that the computational efforts for the oscillatory Pekeris-integrals are independent of wave frequency with the fixed sampling density and integration limit.

Citation


Yang Yang, Yu Mao Wu, Ya-Qiu Jin, Haijing Zhou, Yang Liu, and Jianli Wang, "An Efficient Numerical Technique to Calculate the High Frequency Diffracted Fields from the Convex Scatterers with the Fock-Type Integrals," Progress In Electromagnetics Research C, Vol. 86, 203-215, 2018.
doi:10.2528/PIERC18042202
http://jpier.org/PIERC/pier.php?paper=18042202

References


    1. Keller, J. B., "Diffraction of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 4, No. 3, 312-321, 1956.
    doi:10.1109/TAP.1956.1144427

    2. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, No. 2, 116-130, 1962.
    doi:10.1364/JOSA.52.000116

    3. Wu, T. T., "High frequency scattering," Phys. Rev., Vol. 104, 1201-1212, Dec. 1956.
    doi:10.1103/PhysRev.104.1201

    4. Honl, H., A. W. Maue, and K. Westpfahl, Theory of Diffraction, Springer-Verlag, 1961.

    5. Pathak, P. H., W. D. Burnside, and R. J. Marhefka, "A uniform gtd analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 28, No. 5, 631-642, 1980.
    doi:10.1109/TAP.1980.1142396

    6. Hussar, P. and R. Albus, "On the asymptotic frequency behavior of uniform GTD in the shadow region of a smooth convex surface," IEEE Trans. Antennas Propag., Vol. 39, No. 12, 1672-1680, 1991.
    doi:10.1109/8.121587

    7. Paknys, R., "On the accuracy of the UTD for the scattering by a cylinder," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 757-760, 1994.
    doi:10.1109/8.299580

    8. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 6, 1681-1695, Nov.-Dec. 1996.
    doi:10.1029/96RS02276

    9. Hansen, T. B. and R. A. Shore, "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder ," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, Oct. 1998.
    doi:10.1109/8.725277

    10. Shore, R. A. and A. D. Yaghjian, "Shadow boundary incremental length diffraction coefficients applied to scattering from 3-D bodies," IEEE Trans. Antennas Propag., Vol. 49, No. 2, 200-210, Feb. 2001.
    doi:10.1109/8.914277

    11. Kim, H. T. and N. Wang, "UTD solution for electromagnetic scattering by a circular cylinder with thin lossy coatings," IEEE Trans. Antennas Propag., Vol. 37, No. 11, 1463-1472, 1989.
    doi:10.1109/8.43566

    12. Brick, Y., V. Lomakin, and A. Boag, "Fast direct solver for essentially convex scatterers using multilevel non-uniform grids," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4314-4324, 2014.
    doi:10.1109/TAP.2014.2327651

    13. Syed, H. H. and J. L. Volakis, "High-frequency scattering by a smooth coated cylinder simulated with generalized impedance boundary conditions ," Radio Sci., Vol. 26, No. 5, 1305-1314, 1991.
    doi:10.1029/91RS00999

    14. Chen, X., S. Y. He, D. F. Yu, H. C. Yin, W. D. Hu, and G. Q. Zhu, "Geodesic computation on NURBS surfaces for UTD analysis," IEEE Antenn. Wirel. Pr., Vol. 12, 194-197, 2013.
    doi:10.1109/LAWP.2013.2245291

    15. Tokgoz, C. and R. J. Marhefka, "A UTD based asymptotic solution for the surface magnetic field on a source excited circular cylinder with an impedance boundary condition," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1750-1757, 2006.
    doi:10.1109/TAP.2006.875490

    16. Ruan, Y. C., X. Y. Zhou, J. Y. Chin, T. J. Cui, Y. B. Tao, and H. Lin, "The UTD analysis to EM scattering by arbitrarily convex objects using ray tracing of creeping waves on numerical meshes," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, 2008.

    17. Fock, V. A., Electromagnetic Diffraction and Propagation Problems, Pergamon, New York, 1965.

    18. Hussar, P. E., "A uniform GTD treatment of surface diffraction by impedance and coated cylinders," IEEE Trans. Antennas Propag., Vol. 46, No. 7, 998-1008, 1998.
    doi:10.1109/8.704801

    19. Wu, Y., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
    doi:10.2528/PIER12022308

    20. Wu, Y. M., L. J. Jiang, and W. C. Chew, "Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method," J. Comput. Phys., Vol. 236, 408-425, Mar. 2013.
    doi:10.1016/j.jcp.2012.10.052

    21. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
    doi:10.1109/TAP.2013.2259788

    22. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high-frequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, 2015.
    doi:10.1109/TAP.2015.2407411

    23. Wu, Y.M., W. C. Chew, Y. Q. Jin, L. J. Jiang, H. Ye, and W. E. I. Sha, "A frequency-independent method for computing the physical optics-based electromagnetic fields scattered from a hyperbolic surface," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1546-1552, 2016.
    doi:10.1109/TAP.2016.2526065

    24. Pearson, L. W., "A scheme for automatic computation of fock-type integrals," IEEE Trans. Antennas Propag., Vol. 35, No. 10, 1111-1118, 1987.
    doi:10.1109/TAP.1987.1143985

    25. Aguilar, A. G., P. H. Pathak, and M. Sierra-Perez, "A canonical UTD solution for electromagnetic scattering by an electrically large impedance circular cylinder illuminated by an obliquely incident plane wave," IEEE Trans. Antennas Propag., Vol. 61, No. 10, 5144-5154, 2013.
    doi:10.1109/TAP.2013.2274691

    26. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

    27. Jin, J. M., Theory and Computation of Electromagnetic Fields, Wiley, 2010.
    doi:10.1002/9780470874257

    28. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
    doi:10.1109/PROC.1974.9651

    29. Senior, T. B. A., "Approximate boundary conditions," IEEE Trans. Antennas Propag., Vol. 29, No. 5, 826-829, 1981.
    doi:10.1109/TAP.1981.1142657

    30. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, Institution of Engineering and Technology, 1995.
    doi:10.1049/PBEW041E