Vol. 85

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-07-06

A Novel PSO-Based Transfer Efficiency Optimization Algorithm for Wireless Power Transfer

By Meng Wang, Jing Feng, Yanyan Shi, Minghui Shen, and Jianwei Jing
Progress In Electromagnetics Research C, Vol. 85, 63-75, 2018
doi:10.2528/PIERC18042001

Abstract

To improve the power transfer efficiency in a magnetically-coupled resonant wireless power transfer (MCR-WPT) system, an efficient particle swarm optimization (PSO) algorithm based on the change of particle swarm scale is proposed. The transfer efficiency and frequency are used as the fitness function and particle position, respectively. Therefore, the optimal frequency can be obtained by adjusting the position of particle. Five types of optimizing process are presented and compared with the traditional PSO algorithm. It is found that the proposed method has faster convergence speed than the traditional PSO algorithm. Additionally, the proposed five types of optimizing process with different regulation parameters are investigated. The results indicate that Type 2 with n=3 is the best alternative in finding the optimal frequency with the fastest speed of convergence. Experimental prototypes have been set up for validation.

Citation


Meng Wang, Jing Feng, Yanyan Shi, Minghui Shen, and Jianwei Jing, "A Novel PSO-Based Transfer Efficiency Optimization Algorithm for Wireless Power Transfer," Progress In Electromagnetics Research C, Vol. 85, 63-75, 2018.
doi:10.2528/PIERC18042001
http://jpier.org/PIERC/pier.php?paper=18042001

References


    1. Lee, G., B. H. Waters, Y. G. Shin, J. R. Smith, and W. S. Park, "A reconfigurable resonant coil for range adaptation wireless power transfer," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 2, 624-632, 2016.
    doi:10.1109/TMTT.2015.2512578

    2. Liu, X. C. and G. F. Wang, "A novel wireless power transfer system with double intermediate resonant coils," IEEE Trans. Ind. Electron., Vol. 63, No. 4, 2174-2180, 2016.

    3. Sample, A., D. Meyer, and J. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
    doi:10.1109/TIE.2010.2046002

    4. Fu, M., T. Zhang, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 3, 801-812, 2015.
    doi:10.1109/TMTT.2015.2398422

    5. Na, K., H. Jang, H. Ma, and F. Bien, "Tracking optimal efficiency of magnetic resonance wireless power transfer system for biomedical capsule endoscopy," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 1, 295-304, 2015.
    doi:10.1109/TMTT.2014.2365475

    6. Mi, C. C., G. Buja, Y. C. Su, and C. T. Rim, "Modern advances in wireless power transfer systems for roadway powered electric vehicles," IEEE Trans. Ind. Electron., Vol. 63, No. 10, 6533-6545, 2016.
    doi:10.1109/TIE.2016.2574993

    7. Talla, V. and J. Smith, "An experimental technique for design of practical wireless power transfer systems," IEEE Int. Circuits Syst. Symp., 2041-2044, 2014.

    8. Johari, R., J. V. Krogmeier, and D. J. Love, "Analysis and practical considerations in implementing multiple transmitters for wireless power transfer via coupled magnetic resonance," IEEE Trans. Ind. Electron., Vol. 64, No. 4, 1774-1783, 2014.
    doi:10.1109/TIE.2013.2263780

    9. Wang, J., S. L. Ho, W. Fu, C. T. Kit, and M. Sun, "Finite-element analysis and corresponding experiments of resonant energy transfer for wireless transmission devices," IEEE Trans. Magnetics, Vol. 47, No. 5, 1074-1077, 2011.
    doi:10.1109/TMAG.2010.2078492

    10. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, Q. Wu, L. Sun, D. Erni, and J. L.-W. Lee, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, No. 11, 6097-6107, 2015.
    doi:10.1109/TPEL.2014.2387835

    11. Zhang, Y. M. and Z. M. Zhao, "Frequency splitting analysis of two-coil resonant wireless power transfer," IEEE Ant. Wireless Propag. Lett., Vol. 13, No. 4, 400-402, 2014.
    doi:10.1109/LAWP.2014.2307924

    12. Zhang, Y. M., Z. M. Zhao, and K. Chen, "Frequency splitting analysis of four-coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, No. 4, 2436-2445, 2014.
    doi:10.1109/TIA.2013.2295007

    13. Lan, J., H. Tang, and G. Xin, "Frequency splitting analysis of wireless power transfer system based on T-type transformer model," Electron. Electrical Eng., Vol. 19, No. 10, 109-113, 2013.

    14. Sample, A. P., D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 58, No. 2, 544-554, 2011.
    doi:10.1109/TIE.2010.2046002

    15. Kim, Kim, D. H. Kim, and Y. J. Park, "Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices," IEEE Trans. Ind. Electron., Vol. 62, No. 5, 2807-2813, 2015.
    doi:10.1109/TIE.2014.2365751

    16. Fu, M., H. Yin, X. Zhu, and C. Ma, "Analysis and tracking of optimal load in wireless power transfer systems," IEEE Trans. Power Electron., Vol. 30, No. 7, 3952-3963, 2015.
    doi:10.1109/TPEL.2014.2347071

    17. Vasilev, I., J. Lindstrand, V. Plicanic, and H. Sjoland, "Experimental investigation of adaptive impedance matching for a MIMO terminal with CMOS-SOI tuners," IEEE Trans. Micro. Theory Tech., Vol. 64, No. 5, 1622-1622, 2016.
    doi:10.1109/TMTT.2016.2546244

    18. Koh, K. E., T. C. Beh, T. Imura, and Y. Hori, "Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling," IEEE Trans. Ind. App., Vol. 50, No. 3, 2061-2070, 2014.
    doi:10.1109/TIA.2013.2287310

    19. Heebl, J. D., E. M. Thomas, R. P. Pennoand A. Grbic, "Comprehensive analysis and measurement of frequency-tuned and impedance-tuned wireless non-radiative power-transfer systems," IEEE Antennas Propag. Mag., Vol. 56, No. 4, 44-60, 2014.
    doi:10.1109/MAP.2014.6931657

    20. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 61, No. 1, 350-359, 2013.
    doi:10.1109/TIE.2011.2177611

    21. Li, H., H. Zhang, C. Zhang, P. Li, and R. Cropp, "A novel unsupervised levy flight particle swarm optimization (ULPSO) method for multispectral remote-sensing image classification," International Journal of Remote Sensing, Vol. 38, No. 23, 6970-6992, 2017.
    doi:10.1080/01431161.2017.1368102

    22. Jabri, I., A. Bouallegue, and F. Ghodbane, "Misalignment controller in wireless battery charger for electric vehicle based on MPPT method and metaheuristic algorithm," Wireless Netw., Vol. 10, 1-22, 2017.

    23. Schuetz, M., A. Georgiadis, A. Collado, and G Fischer, "A particle swarm optimizer for tuning a software-defined, highly configurable wireless power transfer platform," Wireless Power Transfer Conference, 1-24, 2015.

    24. Hu, H. and S. V. Georgakopoulos, "Multiband and broadband wireless power transfer systems using the conformal strongly coupled magnetic resonance method," IEEE Trans. Ind. Electron., Vol. 64, No. 5, 3595-3607, 2017.
    doi:10.1109/TIE.2016.2569459

    25. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Lett., Vol. 75, 13-19, 2018.