Vol. 85

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-07-06

Object Locating of Electromagnetic Inclusions in Anisotropic Permeable Background Using MUSIC Algorithm

By Faezeh Shirmehenji, Abolghasem Zeidaabadi-Nezhad, and Zaker Hossein Firouzeh
Progress In Electromagnetics Research C, Vol. 85, 77-89, 2018
doi:10.2528/PIERC18041908

Abstract

In this paper, a new formulation is proposed to solve an inverse scattering problem for locating isolated inclusions within a homogeneous noise-free and noisy biaxial anisotropic permeable background using MUltiple SIgnal Classi cation (MUSIC) algorithm. Locations of the dielectric, permeable, lossless and lossy electromagnetic or both dielectric and permeable inclusions with arbitrary ellipsoidal shapes in a noise-free or noisy background can be restored. The numerical study of different inclusions is illustrated, and accuracy of the method is investigated. The proposed formulation is also investigated for extended inclusions in both noise-free and noisy backgrounds.

Citation


Faezeh Shirmehenji, Abolghasem Zeidaabadi-Nezhad, and Zaker Hossein Firouzeh, "Object Locating of Electromagnetic Inclusions in Anisotropic Permeable Background Using MUSIC Algorithm," Progress In Electromagnetics Research C, Vol. 85, 77-89, 2018.
doi:10.2528/PIERC18041908
http://jpier.org/PIERC/pier.php?paper=18041908

References


    1. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, No. 7, 78-94, 2011.
    doi:10.1109/MMM.2011.942702

    2. Semnani, A., I. T. Rekanos, M. Kamyab, and M. Moghaddam, "Solving inverse scattering problems based on truncated cosine Fourier and cubic B-spline expansions," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5914-5923, 2012.
    doi:10.1109/TAP.2012.2214751

    3. Shamsaddini, M., A. Tavakoli, and P. Dehkhoda, "Inverse electromagnetic scattering of a dielectric cylinder buried below a slightly rough surface using a new intelligence approach," 23rd Iranian Conference on Electrical Engineering (ICEE), 391-396, 2015.

    4. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, No. 4, 591-595, 2001.
    doi:10.1088/0266-5611/17/4/301

    5. Bao, G., J. Lin, and Sé. M. Mefire, "Numerical reconstruction of electromagnetic inclusions in three dimensions," SIAM Journal on Imaging Sciences, Vol. 7, No. 1, 558-577, 2014.
    doi:10.1137/130937640

    6. Chen, X. and K. Agarwal, "MUSIC algorithm for two-dimensional inverse problems with special characteristics of cylinders," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1808-1812, 2008.
    doi:10.1109/TAP.2008.923333

    7. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3217-3223, 2008.
    doi:10.1109/TAP.2008.929434

    8. Joh, Y. D. and W. K. Park, "Structural behavior of the MUSIC-type algorithm for imaging perfectly conducting cracks," Progress In Electromagnetics Research, Vol. 138, 211-226, 2013.
    doi:10.2528/PIER13013104

    9. Joh, Y. D., Y. M. Kwon, and W. K. Park, "MUSIC-type imaging of perfectly conducting cracks in limited-view inverse scattering problems," Applied Mathematics and Computation, Vol. 240, 273-280, 2014.
    doi:10.1016/j.amc.2014.04.097

    10. Park, W. K., "Properties of MUSIC-type algorithm for imaging of thin dielectric inhomogeneity in limited-view inverse scattering problem," Progress In Electromagnetics Research M, Vol. 37, 109-118, 2014.
    doi:10.2528/PIERM14050403

    11. Ahn, C. Y., K. Jeon, and W. K. Park, "Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem," Journal of Computational Physics, Vol. 291, 198-217, 2015.
    doi:10.1016/j.jcp.2015.03.018

    12. Ciuonzo, D., G. Romano, and R. Solimene, "Performance analysis of time-reversal MUSIC," IEEE Transactions on Signal Processing, Vol. 63, No. 10, 2650-2662, 2015.
    doi:10.1109/TSP.2015.2417507

    13. Devaney, A. J., "Time reversal imaging of obscured targets from multistatic data," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1600-1610, 2005.
    doi:10.1109/TAP.2005.846723

    14. Gruber, F. K., E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets," The Journal of the Acoustical Society of America, Vol. 115, No. 6, 3042-3047, 2004.
    doi:10.1121/1.1738451

    15. Marengo, E. A., F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Transactions on Image Processing, Vol. 16, No. 8, 1967-1984, 2007.
    doi:10.1109/TIP.2007.899193

    16. Ammari, H., E. Iakovleva, and D. Lesselier, "Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency," SIAM Journal on Scientific Computing, Vol. 27, No. 1, 130-158, 2005.
    doi:10.1137/040612518

    17. Ammari, H., E. Iakovleva, D. Lesselier, and G. Perrusson, "MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions," SIAM Journal on Scientific Computing, Vol. 29, No. 2, 674-709, 2007.
    doi:10.1137/050640655

    18. Rodeghiero, G., M. Lambert, D. Lesselier, and P. P. Ding, "Electromagnetic MUSIC imaging and 3-D retrieval of defects in anisotropic, multi-layered composite materials," The 9th International Conference on Computational Physics (ICCP9), A05-05, 2015.

    19. Shirmehenji, F., A. Zeidaabadi Nezhad, and Z. H. Firouzeh, "Object locating in anisotropic dielectric background using MUSIC algorithm," 2016 8th International Symposium on Telecommunications (IST), 396-400, 2016.
    doi:10.1109/ISTEL.2016.7881849

    20. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
    doi:10.1002/0470020466

    21. Liu, L., L. B. Kong, G. Q. Lin, S. Matitsine, and C. R. Deng, "Microwave permeability of ferromagnetic microwires composites/metamaterials and potential applications," IEEE Transactions on Magnetics, Vol. 44, No. 11, 3119-3122, 2008.
    doi:10.1109/TMAG.2008.2001628

    22. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

    23. Collin, R. E., Foundations for Microwave Engineering, John Wiley & Sons, 2007.

    24. Herczyński, A., "Bound charges and currents," American Journal of Physics, Vol. 81, No. 3, 202-205, 2013.
    doi:10.1119/1.4773441

    25. Ammari, H. and H. Kang, Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory, Vol. 162, 2007.

    26. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
    doi:10.2528/PIER09080604

    27. Ball, J. E., "Low signal-to-noise ratio radar target detection using linear support vector machines (L-SVM)," 2014 IEEE Radar Conference, 1291-1294, 2014.
    doi:10.1109/RADAR.2014.6875798

    28. Chevalier, P., A. Ferrol, and L. Albera, "High-resolution direction finding from higher order statistics: The 2rmq-MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 54, No. 8, 2986-2997, 2006.
    doi:10.1109/TSP.2006.877661

    29. Dobrzański, L. A., M. Drak, and B. Zibowicz, "Materials with specific magnetic properties," Journal of Achievements in Materials and Manufacturing Engineering, Vol. 17, No. 1-2, 37-40, 2006.